/IVR-QA-baselines

[ICCV 2023] Simple Baselines for Interactive Video Retrieval with Questions and Answers

Primary LanguagePython

【ICCV'2023】Simple Baselines for Interactive Video Retrieval with Questions and Answers

Official code for the ICCV'23 paper "Simple Baselines for Interactive Video Retrieval with Questions and Answers".

Authors: Kaiqu Liang, and Samuel Albanie.

Introduction

To date, the majority of video retrieval systems have been optimized for a "single-shot" scenario in which the user submits a query in isolation, ignoring previous interactions with the system. Recently, there has been renewed interest in interactive systems to enhance retrieval, but existing approaches are complex and deliver limited gains in performance. In this work, we revisit this topic and propose several simple yet effective baselines for interactive video retrieval via question-answering. We employ a VideoQA model to simulate user interactions and show that this enables the productive study of the interactive retrieval task without access to ground truth dialogue data. Experiments on MSR-VTT, MSVD, and AVSD show that our framework using question-based interaction significantly improves the performance of text-based video retrieval systems.

Setup

  1. Set up the environment
git clone https://github.com/kevinliang888/IVR-QA-baselines
cd IVR-QA-baselines
pip install -r requirements.txt
  1. Download raw videos of downstream datasets into datasets directory.

Running

MSRVTT

  • Heuristic
python -m torch.distributed.run --nproc_per_node=1 eval_interactive.py \
--retrieval_config './configs/retrieval_msrvtt.yaml' --output_dir 'output/Retrieval_msrvtt' \
--augment --separate --num_segment 2 --ask_object --ask_regular
  • Auto-text
python -m torch.distributed.run --nproc_per_node=1 eval_interactive.py \
--retrieval_config './configs/retrieval_msrvtt.yaml' --output_dir 'output/Retrieval_msrvtt' \
--automatic --augment --round 1
  • Auto-text-vid
python -m torch.distributed.run --nproc_per_node=1 eval_interactive.py \
--retrieval_config './configs/retrieval_msrvtt.yaml' --output_dir 'output/Retrieval_msrvtt' \
--automatic --augment --round 1 --use_caption

For other datasets (e.g., MSVD, AVSD, LSMDC, Didemo, Activity Net):

  1. Modify the --retrieval_config argument to point to the appropriate retrieval_{DATASET_NAME}.yaml file in the configs directory.
  2. Adjust the --output_dir argument to specify the desired output directory for that dataset.
  3. Adjust the --round argument for different number of interactions.

Citation

If you find this code to be useful for your research, please consider citing.

@inproceedings{liang2023simple,
  title={Simple Baselines for Interactive Video Retrieval with Questions and Answers},
  author={Liang, Kaiqu and Albanie, Samuel},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={11091--11101},
  year={2023}
}

Acknowledgements

Some of the codes are built upon BLIP. We thank the original authors for their open-sourcing.