Progressive implementations of GAN architectures applied to the CUB200 dataset to generate unique images conditioned on attributes and caption embeddings.
- The CUB200 dataset
- Captions for the CUB200 dataset
- Pretrained BERT-large (uncased) model for embedding captions to 1024D vectors
- bert-as-service for utilizing the pretrained BERT model
- A python notebook environment
- Python 3.7
- TensorFlow 2.0 or greater
- Pandas
- OpenCV3
- Vanilla DCGAN
- Multilabel ACGAN
- Multilabel ACGAN with a split discriminator (for finer tuning)
- Multilabel ACGAN with a split discriminator with BERT captions
- Multilabel ACGAN with a split discriminator with BERT captions V2
Vanilla DCGAN:
Multilabel ACGAN:
Multilabel ACGAN w/split Discriminator:
Multilabel ACGAN w/split Discriminator and Captions:
Multilabel ACGAN w/split Discriminator and Captions V2