The source data was collected from the UCI Machine Learning Repository to complete an assignment for a Coursera course named Getting and Cleaning Data instructed by Jeff Leek. The assignment involved working with the data set and producing tidy data representation of the source data. Below is a list of the operations done to achieve the outputs.

This course is part of the Data Science Track.

Steps Performed:

point to working directory where files have been downloaded to
Include the data.table library
Load the three train .txt files with column names
Load the three test .txt files with column names
load the features.txt
load activites with column names
rename the activity Name for easier readablity
combin the y_data, x_data and the subject data
transpose(reshape) the features row names to column names, to be used as heading
determine which columns are for mean() and std()
isolate the required columns
create and write the resulting tidy data
create a data.table for the calculated columns and group by subject and the activity description
write the calculated table

================================================================== Human Activity Recognition Using Smartphones Dataset Version 1.0

Jorge L. Reyes-Ortiz, Davide Anguita, Alessandro Ghio, Luca Oneto. Smartlab - Non Linear Complex Systems Laboratory DITEN - Università degli Studi di Genova. Via Opera Pia 11A, I-16145, Genoa, Italy. activityrecognition@smartlab.ws www.smartlab.ws

The experiments have been carried out with a group of 30 volunteers within an age bracket of 19-48 years. Each person performed six activities (WALKING, WALKING_UPSTAIRS, WALKING_DOWNSTAIRS, SITTING, STANDING, LAYING) wearing a smartphone (Samsung Galaxy S II) on the waist. Using its embedded accelerometer and gyroscope, we captured 3-axial linear acceleration and 3-axial angular velocity at a constant rate of 50Hz. The experiments have been video-recorded to label the data manually. The obtained dataset has been randomly partitioned into two sets, where 70% of the volunteers was selected for generating the training data and 30% the test data.

The sensor signals (accelerometer and gyroscope) were pre-processed by applying noise filters and then sampled in fixed-width sliding windows of 2.56 sec and 50% overlap (128 readings/window). The sensor acceleration signal, which has gravitational and body motion components, was separated using a Butterworth low-pass filter into body acceleration and gravity. The gravitational force is assumed to have only low frequency components, therefore a filter with 0.3 Hz cutoff frequency was used. From each window, a vector of features was obtained by calculating variables from the time and frequency domain. See 'features_info.txt' for more details.

For each record it is provided:

  • Triaxial acceleration from the accelerometer (total acceleration) and the estimated body acceleration.
  • Triaxial Angular velocity from the gyroscope.
  • A 561-feature vector with time and frequency domain variables.
  • Its activity label.
  • An identifier of the subject who carried out the experiment.

The dataset includes the following files:

  • 'README.txt'

  • 'features_info.txt': Shows information about the variables used on the feature vector.

  • 'features.txt': List of all features.

  • 'activity_labels.txt': Links the class labels with their activity name.

  • 'train/X_train.txt': Training set.

  • 'train/y_train.txt': Training labels.

  • 'test/X_test.txt': Test set.

  • 'test/y_test.txt': Test labels.

The following files are available for the train and test data. Their descriptions are equivalent.

  • 'train/subject_train.txt': Each row identifies the subject who performed the activity for each window sample. Its range is from 1 to 30.

  • 'train/Inertial Signals/total_acc_x_train.txt': The acceleration signal from the smartphone accelerometer X axis in standard gravity units 'g'. Every row shows a 128 element vector. The same description applies for the 'total_acc_x_train.txt' and 'total_acc_z_train.txt' files for the Y and Z axis.

  • 'train/Inertial Signals/body_acc_x_train.txt': The body acceleration signal obtained by subtracting the gravity from the total acceleration.

  • 'train/Inertial Signals/body_gyro_x_train.txt': The angular velocity vector measured by the gyroscope for each window sample. The units are radians/second.

Notes:

  • Features are normalized and bounded within [-1,1].
  • Each feature vector is a row on the text file.

For more information about this dataset contact: activityrecognition@smartlab.ws

License:

Use of this dataset in publications must be acknowledged by referencing the following publication [1]

[1] Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra and Jorge L. Reyes-Ortiz. Human Activity Recognition on Smartphones using a Multiclass Hardware-Friendly Support Vector Machine. International Workshop of Ambient Assisted Living (IWAAL 2012). Vitoria-Gasteiz, Spain. Dec 2012

This dataset is distributed AS-IS and no responsibility implied or explicit can be addressed to the authors or their institutions for its use or misuse. Any commercial use is prohibited.

Jorge L. Reyes-Ortiz, Alessandro Ghio, Luca Oneto, Davide Anguita. November 2012.