/optrdd

Optimized regression discontinuity designs

Primary LanguageR

optrdd

Optimized inference in regression discontinuity designs, as proposed by Imbens and Wager (2017).

To install this package in R, run the following commands:

library(devtools) 
install_github("swager/optrdd")

This package currently works with two optimizers: mosek an quadprog. Mosek is a commercial interior point solver that needs to be installed separately, while quadprog is a standard R optimization library. Both optimizers appear to work well with a univariate running variable; however, with multi-dimensional running variables, we strongly recommend installing mosek.

Replication files for Imbens and Wager (2017) are available in the directory experiments_from_paper.

Example usage:

library(optrdd)

# Simple regression discontinuity with discrete X
n = 4000; threshold = 0
X = sample(seq(-4, 4, by = 8/41.5), n, replace = TRUE)
W = as.numeric(X >= threshold)
Y = 0.4 * W + 1 / (1 + exp(2 * X)) + 0.2 * rnorm(n)
# using 0.4 for max.second.derivative would have been enough
out.1 = optrdd(X=X, Y=Y, W=W, max.second.derivative = 0.5, estimation.point = threshold)
print(out.1); plot(out.1, xlim = c(-1.5, 1.5))

# Now, treatment is instead allocated in a neighborhood of 0
thresh.low = -1; thresh.high = 1
W = as.numeric(thresh.low <= X & X <= thresh.high)
Y = 0.2 * (1 + X) * W + 1 / (1 + exp(2 * X)) + rnorm(n)
# This estimates CATE at specifically chosen points
out.2 = optrdd(X=X, Y=Y, W=W, max.second.derivative = 0.5, estimation.point = thresh.low)
print(out.2); plot(out.2, xlim = c(-2.5, 2.5))
out.3 = optrdd(X=X, Y=Y, W=W, max.second.derivative = 0.5, estimation.point = thresh.high)
print(out.3); plot(out.3, xlim = c(-2.5, 2.5))
# This estimates a weighted CATE, with lower variance
out.4 = optrdd(X=X, Y=Y, W=W, max.second.derivative = 0.5)
print(out.4); plot(out.4, xlim = c(-2.5, 2.5))

# RDD with multivariate running variable. Warning: slow without mosek.
X = matrix(runif(n*2, -1, 1), n, 2)
W = as.numeric(X[,1] < 0 | X[,2] < 0)
Y = X[,1]^2/3 + W * (1 + X[,2]) + rnorm(n)
out.5 = optrdd(X=X, Y=Y, W=W, max.second.derivative = 1)
print(out.5); plot(out.5)
out.6 = optrdd(X=X, Y=Y, W=W, max.second.derivative = 1, estimation.point = c(0, 0.5))
print(out.6); plot(out.6)

References

Guido Imbens and Stefan Wager. Optimized Regression Discontinuity Designs. Review of Economics and Statistics, forthcoming. [arxiv]