/megaAVR_PWM

This library enables you to use Hardware-based PWM channels on megaAVR-based boards, such as UNO WiFi Rev2, AVR_Nano_Every, etc., to create and output PWM. Using the same functions as other FastPWM libraries to enable you to port PWM code easily between platforms.

Primary LanguageC++MIT LicenseMIT

megaAVR_PWM Library

arduino-library-badge GitHub release GitHub contributions welcome GitHub issues

Donate to my libraries using BuyMeACoffee



Table of Contents



Why do we need this megaAVR_PWM library

Features

This hardware-based PWM library enables you to use Hardware-PWM on megaAVR-based boards to create and output PWM. These purely hardware-based PWM channels can generate very high PWM frequencies, depending on CPU clock and acceptable accuracy, due to 8 or 16-bit PWM / Timer registers.

This library is using the same or similar functions as other FastPWM libraries, as follows, to enable you to port your PWM code easily between platforms

  1. RP2040_PWM
  2. AVR_PWM
  3. megaAVR_PWM
  4. ESP32_FastPWM
  5. SAMD_PWM
  6. SAMDUE_PWM
  7. nRF52_PWM
  8. Teensy_PWM
  9. ATtiny_PWM
  10. Dx_PWM
  11. Portenta_H7_PWM
  12. MBED_RP2040_PWM
  13. nRF52_MBED_PWM
  14. STM32_PWM

The most important feature is they're purely hardware-based PWM channels. Therefore, their operations are not blocked by bad-behaving software functions / tasks.

This important feature is absolutely necessary for mission-critical tasks. These hardware PWM-channels, still work even if other software functions are blocking. Moreover, they are much more precise (certainly depending on clock frequency accuracy) than other software timers using millis() or micros(). That's necessary if you need to control external systems (Servo, etc.) requiring better accuracy.

New efficient setPWM_manual() function enables waveform creation using PWM.

The PWM_Multi example will demonstrate the usage of multichannel PWM using multiple Hardware-PWM blocks (slices). The 2 independent Hardware-PWM channels are used to control 2 different PWM outputs, with totally independent frequencies and dutycycles on Arduino Mega.

Being hardware-based PWM, their executions are not blocked by bad-behaving functions / tasks, such as connecting to WiFi, Internet or Blynk services.

This non-being-blocked important feature is absolutely necessary for mission-critical tasks.


Why using hardware-based PWM is better

Imagine you have a system with a mission-critical function, controlling a robot or doing something much more important. You normally use a software timer to poll, or even place the function in loop(). But what if another function is blocking the loop() or setup().

So your function might not be executed, and the result would be disastrous.

You'd prefer to have your function called, no matter what happening with other functions (busy loop, bug, etc.).

The correct choice is to use hardware-based PWM.

These hardware-based PWM channels still work even if other software functions are blocking. Moreover, they are much more precise (certainly depending on clock frequency accuracy) than other software-based PWMs, using millis() or micros().

Functions using normal software-based PWMs, relying on loop() and calling millis(), won't work if the loop() or setup() is blocked by certain operation. For example, certain function is blocking while it's connecting to WiFi or some services.


Currently supported Boards

  1. megaAVR-based boards such as UNO WiFi Rev2, AVR_Nano_Every, etc., using Arduino megaAVR core
  2. megaAVR-based boards such as UNO WiFi Rev2, AVR_Nano_Every, ATmega4809, ATmega4808, ATmega3209, ATmega3208, ATmega1609, ATmega1608, ATmega809, ATmega808, etc., using MegaCoreX megaAVR core


Prerequisites

  1. Arduino IDE 1.8.19+ for Arduino. GitHub release
  2. Arduino megaAVR core 1.8.7+ for Arduino megaAVR boards. GitHub release. Use Arduino Board Manager to install.
  3. MegaCoreX megaAVR core 1.1.1+ for Arduino megaAVR boards. GitHub release. Follow How to install.


Installation

Use Arduino Library Manager

The best and easiest way is to use Arduino Library Manager. Search for megaAVR_PWM, then select / install the latest version. You can also use this link arduino-library-badge for more detailed instructions.

Manual Install

Another way to install is to:

  1. Navigate to megaAVR_PWM page.
  2. Download the latest release megaAVR_PWM-main.zip.
  3. Extract the zip file to megaAVR_PWM-main directory
  4. Copy whole megaAVR_PWM-main folder to Arduino libraries' directory such as ~/Arduino/libraries/.

VS Code & PlatformIO

  1. Install VS Code
  2. Install PlatformIO
  3. Install megaAVR_PWM library by using Library Manager. Search for megaAVR_PWM in Platform.io Author's Libraries
  4. Use included platformio.ini file from examples to ensure that all dependent libraries will installed automatically. Please visit documentation for the other options and examples at Project Configuration File


More useful Information

1. Documents

  1. Arduino 101: Timers and Interrupts
  2. megaAVR0-series-Family-Data-Sheet

2. Timer TCB0-TCB3

TCB0-TCB3 are 16-bit timers.

3. Important Notes

Before using any Timer, you have to make sure the Timer has not been used by any other purpose.

/******************************************************************************************************************************
  Pins can be used for hardware-PWM
  // For ATmega4809 (Nano Every, Uno WiFi Rev2, etc.)
  TCA0 (16-bit) used by PWM generation on pins 5, 9 and 10
  TCB0 (16-bit) used by PWM generation on pin 6
  TCB1 (16-bit) used by PWM generation on pin 3
  TCB2 (16-bit)
  TCB3 (16-bit)
  ////////////////////////////////////////////
  // For ATmega4809 (Nano Every, Uno WiFi Rev2, etc.)
  Pin  3 => TIMERB1,       //  3 PF5,  8-bit PWM, 16-bit counter
  Pin  5 => TIMERA0,       //  5 PB2, 16-bit PWM, 16-bit counter
  Pin  6 => TIMERB0,       //  6 PF4,  8-bit PWM, 16-bit counter
  Pin  9 => TIMERA0,       //  9 PB0, 16-bit PWM, 16-bit counter
  Pin 10 => TIMERA0,       // 10 PB1, 16-bit PWM, 16-bit counter
  ////////////////////////////////////////////
******************************************************************************************************************************/


Usage

Before using any PWM Timer and channel, you have to make sure the Timer and channel has not been used by any other purpose.

1. Create PWM Instance with Pin, Frequency and dutycycle

megaAVR_PWM* PWM_Instance;

PWM_Instance = new megaAVR_PWM(PWM_Pins, freq, dutyCycle);

2. Initialize PWM Instance

if (PWM_Instance)
{
  PWM_Instance->setPWM();
}

3. Set or change PWM frequency or dutyCycle

To use float new_dutyCycle

PWM_Instance->setPWM(PWM_Pins, new_frequency, new_dutyCycle);

such as

dutyCycle = 10.0f;
  
Serial.print(F("Change PWM DutyCycle to ")); Serial.println(dutyCycle);
PWM_Instance->setPWM(pinToUse, frequency, dutyCycle);

To use uint32_t new_dutyCycle = (real_dutyCycle * 65536) / 100

PWM_Instance->setPWM_Int(PWM_Pins, new_frequency, new_dutyCycle);

such as for real_dutyCycle = 50%

// 50% dutyCycle = (real_dutyCycle * 65535) / 100
dutyCycle = 32767;

Serial.print(F("Change PWM DutyCycle to (%) "));
Serial.println((float) dutyCycle * 100 / 65536);
PWM_Instance->setPWM_Int(pinToUse, frequency, dutyCycle);

for real_dutyCycle = 50%

// 20% dutyCycle = (real_dutyCycle * 65535) / 100
dutyCycle = 13107;

Serial.print(F("Change PWM DutyCycle to (%) "));
Serial.println((float) dutyCycle * 100 / 65536);
PWM_Instance->setPWM_Int(pinToUse, frequency, dutyCycle);

4. Set or change PWM frequency and dutyCycle manually and efficiently in waveform creation

Function prototype

bool setPWM_manual(const uint8_t& pin, const uint16_t& DCValue);

Need to call only once for each pin

PWM_Instance->setPWM(PWM_Pins, frequency, dutyCycle);

after that, if just changing dutyCycle / level, use

PWM_Instance->setPWM_manual(PWM_Pins, new_level);


Examples:

  1. PWM_Basic
  2. PWM_DynamicDutyCycle
  3. PWM_DynamicDutyCycle_Int
  4. PWM_DynamicFreq
  5. PWM_Multi
  6. PWM_MultiChannel
  7. PWM_Waveform
  8. PWM_StepperControl New


Example PWM_Multi

/******************************************************************************************************************************
Pins can be used for hardware-PWM
// For ATmega4809 (Nano Every, Uno WiFi Rev2, etc.)
TCA0 (16-bit) used by PWM generation on pins 5, 9 and 10
TCB0 (16-bit) used by PWM generation on pin 6
TCB1 (16-bit) used by PWM generation on pin 3
TCB2 (16-bit)
TCB3 (16-bit)
////////////////////////////////////////////
// For ATmega4809 (Nano Every, Uno WiFi Rev2, etc.)
Pin 3 => TIMERB1, // 3 PF5, 8-bit PWM, 16-bit counter
Pin 5 => TIMERA0, // 5 PB2, 16-bit PWM, 16-bit counter
Pin 6 => TIMERB0, // 6 PF4, 8-bit PWM, 16-bit counter
Pin 9 => TIMERA0, // 9 PB0, 16-bit PWM, 16-bit counter
Pin 10 => TIMERA0, // 10 PB1, 16-bit PWM, 16-bit counter
////////////////////////////////////////////
******************************************************************************************************************************/
#define _PWM_LOGLEVEL_ 1
#include "megaAVR_PWM.h"
#define USING_TIMERB true
#if USING_TIMERB
// Pins tested OK in Nano Every ATmega4809
#define pinToUse 3 // TimerB1, for higher frequencies, up to 100KHz
//#define pinToUse 6 // TimerB0, for higher frequencies, up to 100KHz
uint32_t PWM_Pins[] = { 3, 6 };
#elif USING_ARDUINO_MEGA_AVR_CORE
// Pins tested OK in Nano Every ATmega4809
#define pinToUse 5 // TimerA0, only accurate @ low frequencies (< 1KHz) because of low 250KHz clock
//#define pinToUse 9 // TimerA0, only accurate @ low frequencies (< 1KHz) because of low 250KHz clock
//#define pinToUse 10 // TimerA0, only accurate @ low frequencies (< 1KHz) because of low 250KHz clock
// Only 1 pin to be used for TimerA0. All sharing same frequency
uint32_t PWM_Pins[] = { 5 };
#else
#error TimerA0 to be used with Arduino megaAVR Core
#endif
////////////////////////////////////////////
#define NUM_OF_PINS ( sizeof(PWM_Pins) / sizeof(uint32_t) )
float dutyCycle[] = { 10.0f, 50.0f, 80.0f };
#if USING_TIMERB
float freq[] = { 1000.0f, 4000.0f, 8000.0f };
#else
float freq[] = { 100.0f };
#endif
//creates pwm instances
megaAVR_PWM* PWM_Instance[NUM_OF_PINS];
char dashLine[] = "=====================================================================================";
void printPWMInfo(megaAVR_PWM* PWM_Instance)
{
Serial.println(dashLine);
Serial.print("Actual data: pin = ");
Serial.print(PWM_Instance->getPin());
Serial.print(", PWM DC = ");
Serial.print(PWM_Instance->getActualDutyCycle());
Serial.print(", PWMPeriod = ");
Serial.print(PWM_Instance->getPWMPeriod());
Serial.print(", PWM Freq (Hz) = ");
Serial.println(PWM_Instance->getActualFreq(), 4);
Serial.println(dashLine);
}
void setup()
{
Serial.begin(115200);
while (!Serial && millis() < 5000);
//delay(1000);
Serial.print(F("\nStarting PWM_Multi on "));
Serial.println(BOARD_NAME);
Serial.println(MEGA_AVR_PWM_VERSION);
Serial.println(dashLine);
Serial.println("Index\tPin\tPWM_freq\tDutyCycle\tActual Freq");
Serial.println(dashLine);
for (uint8_t index = 0; index < NUM_OF_PINS; index++)
{
PWM_Instance[index] = new megaAVR_PWM(PWM_Pins[index], freq[index], dutyCycle[index]);
if (PWM_Instance[index])
{
PWM_Instance[index]->setPWM();
Serial.print(index);
Serial.print("\t");
Serial.print(PWM_Pins[index]);
Serial.print("\t");
Serial.print(freq[index]);
Serial.print("\t\t");
Serial.print(dutyCycle[index]);
Serial.print("\t\t");
Serial.println(PWM_Instance[index]->getActualFreq(), 4);
}
else
{
Serial.println();
}
}
for (uint8_t index = 0; index < NUM_OF_PINS; index++)
{
printPWMInfo(PWM_Instance[index]);
}
}
void loop()
{
//Long delay has no effect on the operation of hardware-based PWM channels
delay(1000000);
}



Debug Terminal Output Samples

1. PWM_DynamicDutyCycle on MegaCoreX Nano Every

The following is the sample terminal output when running example PWM_DynamicDutyCycle on megaAVR Nano Every using MegaCoreX, to demonstrate the ability to provide high PWM frequencies and ability to change DutyCycle on-the-fly.

Starting PWM_DynamicDutyCycle on MegaCoreX Nano Every
megaAVR_PWM v1.0.1
[PWM] megaAVR_PWM: _dutycycle = 32767
[PWM] setPWM_Int: input dutycycle = 127
[PWM] setPWM_Int: _timer = 3
[PWM] setPeriod_TimerB: F_CPU = 16000000 , cycles = 3200
[PWM] setPeriod_TimerB: cycles < TIMERB_RESOLUTION * 64, using divider = 64
[PWM] setPeriod_TimerB: pwmPeriod = 50 , _actualFrequency = 5000.00
[PWM] setPWM_Int: TIMERB, _dutycycle = 24 , DC % = 50.00
=====================================================================================
Change PWM DutyCycle to 90.00
[PWM] setPWM: _dutycycle = 58981
[PWM] setPWM_Int: input dutycycle = 230
[PWM] setPWM_Int: _timer = 3
[PWM] setPeriod_TimerB: F_CPU = 16000000 , cycles = 16000
[PWM] setPeriod_TimerB: cycles < TIMERB_RESOLUTION * 64, using divider = 64
[PWM] setPeriod_TimerB: pwmPeriod = 250 , _actualFrequency = 1000.00
[PWM] setPWM_Int: TIMERB, _dutycycle = 224 , DC % = 90.00
=====================================================================================
Actual data: pin = 3, PWM DC = 90.00, PWMPeriod = 250.00, PWM Freq (Hz) = 1000.0000
=====================================================================================
Change PWM DutyCycle to 10.00
[PWM] setPWM: _dutycycle = 6553
[PWM] setPWM_Int: input dutycycle = 25
[PWM] setPWM_Int: _timer = 3
[PWM] setPeriod_TimerB: F_CPU = 16000000 , cycles = 16000
[PWM] setPeriod_TimerB: cycles < TIMERB_RESOLUTION * 64, using divider = 64
[PWM] setPeriod_TimerB: pwmPeriod = 250 , _actualFrequency = 1000.00
[PWM] setPWM_Int: TIMERB, _dutycycle = 24 , DC % = 10.00
=====================================================================================
Actual data: pin = 3, PWM DC = 10.00, PWMPeriod = 250.00, PWM Freq (Hz) = 1000.0000
=====================================================================================
Change PWM DutyCycle to 90.00
[PWM] setPWM: _dutycycle = 58981
[PWM] setPWM_Int: input dutycycle = 230
[PWM] setPWM_Int: _timer = 3
[PWM] setPeriod_TimerB: F_CPU = 16000000 , cycles = 16000
[PWM] setPeriod_TimerB: cycles < TIMERB_RESOLUTION * 64, using divider = 64
[PWM] setPeriod_TimerB: pwmPeriod = 250 , _actualFrequency = 1000.00
[PWM] setPWM_Int: TIMERB, _dutycycle = 224 , DC % = 90.00
=====================================================================================
Actual data: pin = 3, PWM DC = 90.00, PWMPeriod = 250.00, PWM Freq (Hz) = 1000.0000
=====================================================================================

2. PWM_Multi on megaAVR Nano Every

The following is the sample terminal output when running example PWM_Multi on megaAVR Nano Every, to demonstrate the ability to provide high PWM frequencies on multiple PWM-capable pins.

Starting PWM_Multi on megaAVR Nano Every
megaAVR_PWM v1.0.1
=====================================================================================
Index	Pin	PWM_freq	DutyCycle	Actual Freq
=====================================================================================
0	3	1000.00		10.00		1000.0000
1	6	4000.00		50.00		4000.0000
=====================================================================================
Actual data: pin = 3, PWM DC = 10.00, PWMPeriod = 250.00, PWM Freq (Hz) = 1000.0000
=====================================================================================
=====================================================================================
Actual data: pin = 6, PWM DC = 50.00, PWMPeriod = 62.00, PWM Freq (Hz) = 4000.0000
=====================================================================================

3. PWM_DynamicFreq on megaAVR Nano Every

The following is the sample terminal output when running example PWM_DynamicFreq on megaAVR Nano Every, to demonstrate the ability to change dynamically PWM frequencies.

Starting PWM_DynamicFreq on megaAVR Nano Every
megaAVR_PWM v1.0.1
[PWM] megaAVR_PWM: _dutycycle = 32767
[PWM] setPWM_Int: input dutycycle = 127
[PWM] setPWM_Int: _timer = 3
[PWM] setPeriod_TimerB: F_CPU = 16000000 , cycles = 16000
[PWM] setPeriod_TimerB: cycles < TIMERB_RESOLUTION * 64, using divider = 64
[PWM] setPeriod_TimerB: pwmPeriod = 250 , _actualFrequency = 1000.00
[PWM] setPWM_Int: TIMERB, _dutycycle = 124 , DC % = 50.00
=====================================================================================
Change PWM Freq to 4000.00
[PWM] setPWM: _dutycycle = 32767
[PWM] setPWM_Int: input dutycycle = 127
[PWM] setPWM_Int: _timer = 3
[PWM] setPeriod_TimerB: F_CPU = 16000000 , cycles = 4000
[PWM] setPeriod_TimerB: cycles < TIMERB_RESOLUTION * 64, using divider = 64
[PWM] setPeriod_TimerB: pwmPeriod = 62 , _actualFrequency = 4000.00
[PWM] setPWM_Int: TIMERB, _dutycycle = 30 , DC % = 50.00
=====================================================================================
Actual data: pin = 3, PWM DC = 50.00, PWMPeriod = 62.00, PWM Freq (Hz) = 4000.0000
=====================================================================================
Change PWM Freq to 1000.00
[PWM] setPWM: _dutycycle = 32767
[PWM] setPWM_Int: input dutycycle = 127
[PWM] setPWM_Int: _timer = 3
[PWM] setPeriod_TimerB: F_CPU = 16000000 , cycles = 16000
[PWM] setPeriod_TimerB: cycles < TIMERB_RESOLUTION * 64, using divider = 64
[PWM] setPeriod_TimerB: pwmPeriod = 250 , _actualFrequency = 1000.00
[PWM] setPWM_Int: TIMERB, _dutycycle = 124 , DC % = 50.00
=====================================================================================
Actual data: pin = 3, PWM DC = 50.00, PWMPeriod = 250.00, PWM Freq (Hz) = 1000.0000
=====================================================================================

4. PWM_Waveform on megaAVR Nano Every

The following is the sample terminal output when running example PWM_Waveform on megaAVR Nano Every, to demonstrate how to use the setPWM_manual() function in wafeform creation

Starting PWM_Waveform on megaAVR Nano Every
megaAVR_PWM v1.0.1
[PWM] megaAVR_PWM: _dutycycle = 0
[PWM] setPWM: _dutycycle = 0
[PWM] setPWM_Int: input dutycycle = 0
[PWM] setPWM_Int: _timer = 3
[PWM] setPeriod_TimerB: F_CPU = 16000000 , cycles = 16000
[PWM] setPeriod_TimerB: cycles < TIMERB_RESOLUTION * 64, using divider = 64
[PWM] setPeriod_TimerB: pwmPeriod = 250 , _actualFrequency = 1000.00
[PWM] setPWM_Int: TIMERB, _dutycycle = 0 , DC % = 0.40
============================================================================================
Actual data: pin = 3, PWM DutyCycle = 0.40, PWMPeriod = 250.00, PWM Freq (Hz) = 1000.0000
============================================================================================
[PWM] PWM enabled, DCValue = 0 , pwmPeriod = 250 , _frequency = 1000.00 , _actualFrequency = 1000.00
[PWM] PWM enabled, DCValue = 15 , pwmPeriod = 250 , _frequency = 1000.00 , _actualFrequency = 1000.00
[PWM] PWM enabled, DCValue = 31 , pwmPeriod = 250 , _frequency = 1000.00 , _actualFrequency = 1000.00
[PWM] PWM enabled, DCValue = 46 , pwmPeriod = 250 , _frequency = 1000.00 , _actualFrequency = 1000.00
[PWM] PWM enabled, DCValue = 62 , pwmPeriod = 250 , _frequency = 1000.00 , _actualFrequency = 1000.00
[PWM] PWM enabled, DCValue = 78 , pwmPeriod = 250 , _frequency = 1000.00 , _actualFrequency = 1000.00
[PWM] PWM enabled, DCValue = 93 , pwmPeriod = 250 , _frequency = 1000.00 , _actualFrequency = 1000.00
[PWM] PWM enabled, DCValue = 109 , pwmPeriod = 250 , _frequency = 1000.00 , _actualFrequency = 1000.00
[PWM] PWM enabled, DCValue = 125 , pwmPeriod = 250 , _frequency = 1000.00 , _actualFrequency = 1000.00
[PWM] PWM enabled, DCValue = 140 , pwmPeriod = 250 , _frequency = 1000.00 , _actualFrequency = 1000.00
[PWM] PWM enabled, DCValue = 156 , pwmPeriod = 250 , _frequency = 1000.00 , _actualFrequency = 1000.00
[PWM] PWM enabled, DCValue = 171 , pwmPeriod = 250 , _frequency = 1000.00 , _actualFrequency = 1000.00
[PWM] PWM enabled, DCValue = 187 , pwmPeriod = 250 , _frequency = 1000.00 , _actualFrequency = 1000.00
[PWM] PWM enabled, DCValue = 203 , pwmPeriod = 250 , _frequency = 1000.00 , _actualFrequency = 1000.00
[PWM] PWM enabled, DCValue = 218 , pwmPeriod = 250 , _frequency = 1000.00 , _actualFrequency = 1000.00
[PWM] PWM enabled, DCValue = 234 , pwmPeriod = 250 , _frequency = 1000.00 , _actualFrequency = 1000.00
[PWM] PWM enabled, DCValue = 250 , pwmPeriod = 250 , _frequency = 1000.00 , _actualFrequency = 1000.00
[PWM] PWM enabled, DCValue = 234 , pwmPeriod = 250 , _frequency = 1000.00 , _actualFrequency = 1000.00
[PWM] PWM enabled, DCValue = 218 , pwmPeriod = 250 , _frequency = 1000.00 , _actualFrequency = 1000.00
[PWM] PWM enabled, DCValue = 203 , pwmPeriod = 250 , _frequency = 1000.00 , _actualFrequency = 1000.00
[PWM] PWM enabled, DCValue = 187 , pwmPeriod = 250 , _frequency = 1000.00 , _actualFrequency = 1000.00
[PWM] PWM enabled, DCValue = 171 , pwmPeriod = 250 , _frequency = 1000.00 , _actualFrequency = 1000.00
[PWM] PWM enabled, DCValue = 156 , pwmPeriod = 250 , _frequency = 1000.00 , _actualFrequency = 1000.00
[PWM] PWM enabled, DCValue = 140 , pwmPeriod = 250 , _frequency = 1000.00 , _actualFrequency = 1000.00
[PWM] PWM enabled, DCValue = 125 , pwmPeriod = 250 , _frequency = 1000.00 , _actualFrequency = 1000.00
[PWM] PWM enabled, DCValue = 109 , pwmPeriod = 250 , _frequency = 1000.00 , _actualFrequency = 1000.00
[PWM] PWM enabled, DCValue = 93 , pwmPeriod = 250 , _frequency = 1000.00 , _actualFrequency = 1000.00
[PWM] PWM enabled, DCValue = 78 , pwmPeriod = 250 , _frequency = 1000.00 , _actualFrequency = 1000.00
[PWM] PWM enabled, DCValue = 62 , pwmPeriod = 250 , _frequency = 1000.00 , _actualFrequency = 1000.00
[PWM] PWM enabled, DCValue = 46 , pwmPeriod = 250 , _frequency = 1000.00 , _actualFrequency = 1000.00
[PWM] PWM enabled, DCValue = 31 , pwmPeriod = 250 , _frequency = 1000.00 , _actualFrequency = 1000.00
[PWM] PWM enabled, DCValue = 15 , pwmPeriod = 250 , _frequency = 1000.00 , _actualFrequency = 1000.00
[PWM] PWM enabled, DCValue = 0 , pwmPeriod = 250 , _frequency = 1000.00 , _actualFrequency = 1000.00


Debug

Debug is enabled by default on Serial.

You can also change the debugging level _PWM_LOGLEVEL_ from 0 to 4

// Don't define _PWM_LOGLEVEL_ > 0. Only for special ISR debugging only. Can hang the system.
#define _PWM_LOGLEVEL_     0

Troubleshooting

If you get compilation errors, more often than not, you may need to install a newer version of the core for Arduino boards.

Sometimes, the library will only work if you update the board core to the latest version because I am using newly added functions.



Issues

Submit issues to: megaAVR_PWM issues


TO DO

  1. Search for bug and improvement.
  2. Similar features for remaining Arduino boards

DONE

  1. Basic hardware-based multi-channel PWMs for megaAVR-based boards such as UNO WiFi Rev2, AVR_Nano_Every, etc.**, using either
  1. Add example PWM_StepperControl to demo how to control Stepper Motor using PWM


Contributions and Thanks

Many thanks for everyone for bug reporting, new feature suggesting, testing and contributing to the development of this library.

  1. Thanks to Paul van Dinther for proposing new way to use PWM to drive Stepper-Motor in Using PWM to step a stepper driver #16, leading to v2.0.3
dinther
Paul van Dinther


Contributing

If you want to contribute to this project:

  • Report bugs and errors
  • Ask for enhancements
  • Create issues and pull requests
  • Tell other people about this library

License

  • The library is licensed under MIT

Copyright

Copyright (c) 2022- Khoi Hoang