/mipt-nlp2022

NLP course, MIPT

Primary LanguageJupyter Notebook

mipt-nlp2022

NLP course, MIPT

Course instructors

Anton Emelianov (login-const@mail.ru, @king_menin), Albina Akhmetgareeva (albina.akhmetgareeva@gmail.com)

Videos here

Exam questions here

Mark

$$final_mark=sum_i (max_score(HW_i)) / count(HWs) * 10, i==1..3$$

Lecture schedule

Week 1

Week 2

Distributional semantics. Count-based (pre-neural) methods. Word2Vec: learn vectors. GloVe: count, then learn. N-gram (collocations) RusVectores. t-SNE.

Week 3

Neural Language Models: Recurrent Models, Convolutional Models. Text classification (architectures)

Week 4

Task description, methods (Markov Model, RNNs), evaluation (perplexity), Sequence Labelling (NER, pos-tagging, chunking etc.) N-gram language models, HMM, MEMM, CRF

Week 5

Basics: Encoder-Decoder framework, Inference (e.g., beam search), Eval (bleu). Attention: general, score functions, models. Bahdanau and Luong models. Transformer: self-attention, masked self-attention, multi-head attention.

Week 6

Bertology (BERT, GPT-s, t5, etc.), Subword Segmentation (BPE), Evaluation of big LMs.

Week 7

Lecture & Practical: How to train big models? Distributed training

Training Multi-Billion Parameter Language Models. Model Parallelism. Data Parallelism.

Week 8

Squads (one-hop, multi-hop), architectures, retrieval and search, chat-bots

Week 9

Week 10

Recommended Resources

En

На русском (и про русский, в основном)

Literature

  • Manning, Christopher D., and Hinrich Schütze. Foundations of statistical natural language processing. Vol. 999. Cambridge: MIT press, 1999.
  • Martin, James H., and Daniel Jurafsky. "Speech and language processing." International Edition 710 (2000): 25.
  • Cohen, Shay. "Bayesian analysis in natural language processing." Synthesis Lectures on Human Language Technologies 9, no. 2 (2016): 1-274.
  • Goldberg, Yoav. "Neural Network Methods for Natural Language Processing." Synthesis Lectures on Human Language Technologies 10, no. 1 (2017): 1-309.