根据源码: https://github.com/bubbliiiing/yolov4-pytorch 修改完成
感谢bubbliiiing
在yolo.py 中计算含有目标top left bottom right下方 添加如下代码用以生成配套txt文件,然后进入SaveData文件夹中运行txt2xml.py即可获取xml文件
SaveImage = image.copy()
SaveImage = cv2.cvtColor(numpy.asarray(SaveImage), cv2.COLOR_RGB2BGR)
SaveImageName = str(uuid.uuid1())
SaveImageLabel = "kiven"
Space = " "
Xmin = str(left)
Ymin = str(top)
Xmax = str(right)
Ymax = str(bottom)
SaveTxtInfo = (
SaveImageName+Space+SaveImageLabel+Space+Xmin+Space+Ymin+Space+Xmax+Space+Ymax+'\n')
cv2.imwrite("./SaveData/img/%s.jpg" % SaveImageName, SaveImage) # 存储含有目标的图像(在画目标框之前存储,避免被画框)
with open("./SaveData/txt/%s.txt" % SaveImageName, "a", encoding='utf-8') as txt:
txt.write(SaveTxtInfo)
2021年2月7日更新:
加入letterbox_image的选项,关闭letterbox_image后网络的map得到大幅度提升。
- 性能情况 Performance
- 实现的内容 Achievement
- 所需环境 Environment
- 注意事项 Attention
- 小技巧的设置 TricksSet
- 文件下载 Download
- 预测步骤 How2predict
- 训练步骤 How2train
- 评估步骤 How2eval
- 参考资料 Reference
训练数据集 | 权值文件名称 | 测试数据集 | 输入图片大小 | mAP 0.5:0.95 | mAP 0.5 |
---|---|---|---|---|---|
VOC07+12+COCO | yolo4_voc_weights.pth | VOC-Test07 | 416x416 | - | 89.0 |
COCO-Train2017 | yolo4_weights.pth | COCO-Val2017 | 416x416 | 46.1 | 70.2 |
- 主干特征提取网络:DarkNet53 => CSPDarkNet53
- 特征金字塔:SPP,PAN
- 训练用到的小技巧:Mosaic数据增强、Label Smoothing平滑、CIOU、学习率余弦退火衰减
- 激活函数:使用Mish激活函数
- ……balabla
torch==1.2.0
代码中的yolo4_weights.pth是基于608x608的图片训练的,但是由于显存原因。我将代码中的图片大小修改成了416x416。有需要的可以修改回来。 代码中的默认anchors是基于608x608的图片的。
注意不要使用中文标签,文件夹中不要有空格!
在训练前需要务必在model_data下新建一个txt文档,文档中输入需要分的类,在train.py中将classes_path指向该文件。
在train.py文件下:
1、mosaic参数可用于控制是否实现Mosaic数据增强。
2、Cosine_scheduler可用于控制是否使用学习率余弦退火衰减。
3、label_smoothing可用于控制是否Label Smoothing平滑。
训练所需的yolo4_weights.pth可在百度网盘中下载。
链接: https://pan.baidu.com/s/1WlDNPtGO1pwQbqwKx1gRZA 提取码: p4sc
yolo4_weights.pth是coco数据集的权重。
yolo4_voc_weights.pth是voc数据集的权重。
VOC数据集下载地址如下:
VOC2007+2012训练集
链接: https://pan.baidu.com/s/16pemiBGd-P9q2j7dZKGDFA 提取码: eiw9
VOC2007测试集
链接: https://pan.baidu.com/s/1BnMiFwlNwIWG9gsd4jHLig 提取码: dsda
- 下载完库后解压,在百度网盘下载yolo4_weights.pth或者yolo4_voc_weights.pth,放入model_data,运行predict.py,输入
img/street.jpg
- 利用video.py可进行摄像头检测。
- 按照训练步骤训练。
- 在yolo.py文件里面,在如下部分修改model_path和classes_path使其对应训练好的文件;model_path对应logs文件夹下面的权值文件,classes_path是model_path对应分的类。
_defaults = {
"model_path": 'model_data/yolo4_weights.pth',
"anchors_path": 'model_data/yolo_anchors.txt',
"classes_path": 'model_data/coco_classes.txt',
"model_image_size" : (416, 416, 3),
"confidence": 0.5,
"cuda": True
}
- 运行predict.py,输入
img/street.jpg
- 利用video.py可进行摄像头检测。
- 本文使用VOC格式进行训练。
- 训练前将标签文件放在VOCdevkit文件夹下的VOC2007文件夹下的Annotation中。
- 训练前将图片文件放在VOCdevkit文件夹下的VOC2007文件夹下的JPEGImages中。
- 在训练前利用voc2yolo4.py文件生成对应的txt。
- 再运行根目录下的voc_annotation.py,运行前需要将classes改成你自己的classes。注意不要使用中文标签,文件夹中不要有空格!
classes = ["aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]
- 此时会生成对应的2007_train.txt,每一行对应其图片位置及其真实框的位置。
- 在训练前需要务必在model_data下新建一个txt文档,文档中输入需要分的类,在train.py中将classes_path指向该文件,示例如下:
classes_path = 'model_data/new_classes.txt'
model_data/new_classes.txt文件内容为:
cat
dog
...
- 运行train.py即可开始训练。
评估过程可参考视频https://www.bilibili.com/video/BV1zE411u7Vw
步骤是一样的,不需要自己再建立get_dr_txt.py、get_gt_txt.py等文件。
- 本文使用VOC格式进行评估。
- 评估前将标签文件放在VOCdevkit文件夹下的VOC2007文件夹下的Annotation中。
- 评估前将图片文件放在VOCdevkit文件夹下的VOC2007文件夹下的JPEGImages中。
- 在评估前利用voc2yolo4.py文件生成对应的txt,评估用的txt为VOCdevkit/VOC2007/ImageSets/Main/test.txt,需要注意的是,如果整个VOC2007里面的数据集都是用于评估,那么直接将trainval_percent设置成0即可。
- 在yolo.py文件里面,在如下部分修改model_path和classes_path使其对应训练好的文件;model_path对应logs文件夹下面的权值文件,classes_path是model_path对应分的类。
- 运行get_dr_txt.py和get_gt_txt.py,在./input/detection-results和./input/ground-truth文件夹下生成对应的txt。
- 运行get_map.py即可开始计算模型的mAP。
更新了get_gt_txt.py、get_dr_txt.py和get_map.py文件。
get_map文件克隆自https://github.com/Cartucho/mAP
具体mAP计算过程可参考:https://www.bilibili.com/video/BV1zE411u7Vw
https://github.com/qqwweee/keras-yolo3/
https://github.com/Cartucho/mAP
https://github.com/Ma-Dan/keras-yolo4