/SahiConv2d

SAHI主要是为了优化目标检测网络中的注意力机制而设计的,SAHI是SahiConv2d的缩写,全称为Saliency Attentive Histological Image。

Primary LanguagePython

它能够自适应地调整感受野大小,从而使神经网络在处理不同尺度的目标时具有更好的性能。SAHI在卷积计算时动态地调整卷积核的权重,使其更加关注感兴趣的区域,从而提高了网络的性能。 在目标检测中,SahiConv2d可以用于替代传统的卷积操作,使得网络能够更好地适应不同的目标和场景,提高目标检测的精度和鲁棒性。