/inlar

INLA output to tibble and ggplot

Primary LanguageROtherNOASSERTION

inlar

The goal of inlar is to ease output processing of INLA’s outputs by putting them in tibble format.

Installation

You can install the released version of inlar here.

#' remotes::install_github("kklot/inlar")

Example

This is a basic example which shows you how to solve a common problem:

library(ggplot2)
library(inlar) 
set.seed(1)

The original data is binded to the output by default for those subject-specific outputs.

r = INLA::inla(y ~ 1 + f(x, model = 'iid'),
  data = data.frame(y = rnorm(2), x = rnorm(2)),
  control.compute = list(config = TRUE),
  control.predictor = list(compute = TRUE, link = 1)
)

## Summary
r |> as_tibble(type = 'summary', 'random')
#>   var         id       mean        sd       q025        q50      q975
#> 1   x -0.8356286 -0.4018769 0.3894734 -1.1826484 -0.4011349 0.3727972
#> 2   x  1.5952808  0.4018712 0.3894732 -0.3737118  0.4010382 1.1815156
r |> as_tibble(type = 'summary', 'linear.predictor')
#> # A tibble: 2 x 8
#>   subj_id       mean     sd   q025    q50   q975      y      x
#>   <chr>        <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>
#> 1 Predictor.1 -0.624 0.0262 -0.661 -0.626 -0.573 -0.626 -0.836
#> 2 Predictor.2  0.181 0.0263  0.130  0.183  0.218  0.184  1.60

## Marginals
r |> as_tibble(type = 'marginals', 'random')
#> # A tibble: 150 x 4
#>    var      id     x          y
#>    <chr> <dbl> <dbl>      <dbl>
#>  1 x         1 -4.59 0.00000455
#>  2 x         1 -4.47 0.0000824 
#>  3 x         1 -4.46 0.0000843 
#>  4 x         1 -4.36 0.000102  
#>  5 x         1 -3.80 0.000237  
#>  6 x         1 -3.76 0.000254  
#>  7 x         1 -3.00 0.000923  
#>  8 x         1 -2.92 0.00107   
#>  9 x         1 -2.62 0.00185   
#> 10 x         1 -2.50 0.00236   
#> # ... with 140 more rows
r |> as_tibble(type = 'marginals', 'linear.predictor')
#> # A tibble: 150 x 3
#>       id      x         y
#>    <dbl>  <dbl>     <dbl>
#>  1     1 -0.946 0.0000447
#>  2     1 -0.935 0.00107  
#>  3     1 -0.935 0.00109  
#>  4     1 -0.927 0.00129  
#>  5     1 -0.881 0.00275  
#>  6     1 -0.881 0.00276  
#>  7     1 -0.817 0.00874  
#>  8     1 -0.809 0.0103   
#>  9     1 -0.785 0.0173   
#> 10     1 -0.776 0.0212   
#> # ... with 140 more rows

## Posterior sample
samples = inla.posterior.sample(2, r)

samples |> as_tibble("hyperpar")
#> # A tibble: 4 x 3
#>   sample_id term                                       value
#>       <dbl> <chr>                                      <dbl>
#> 1         1 Precision for the Gaussian observations 26680.  
#> 2         1 Precision for x                             4.74
#> 3         2 Precision for the Gaussian observations  6537.  
#> 4         2 Precision for x                             2.61
samples |> as_tibble("latent")
#> # A tibble: 10 x 4
#>    sample_id term        term_id   value
#>        <dbl> <chr>         <dbl>   <dbl>
#>  1         1 Predictor         1 -0.621 
#>  2         1 Predictor         2  0.187 
#>  3         1 x                 1 -0.693 
#>  4         1 x                 2  0.113 
#>  5         1 (Intercept)       1  0.0720
#>  6         2 Predictor         1 -0.606 
#>  7         2 Predictor         2  0.160 
#>  8         2 x                 1 -1.05  
#>  9         2 x                 2 -0.283 
#> 10         2 (Intercept)       1  0.441
samples |> as_tibble("logdens")
#> # A tibble: 2 x 4
#>   sid   hyperpar latent  joint
#>   <chr>    <dbl>  <dbl>  <dbl>
#> 1 1        -14.1   17.5  3.41 
#> 2 2        -13.1   12.2 -0.862

Some figures

autoplot(r, "summary", "random") +
  labs(title = "autoplot for INLA", x = "X's effect", y = "Est (95% CrI)")
Random effects

Random effects

autoplot(r, "summary", "fitted.values") +
  geom_abline(slope = 1, intercept = 0) +
  labs(title = "Fitted vs data", x = "Fitted median", y = "Data", caption = 'can be wrong if link function is not correctly specify')
Fitted

Fitted