/SLaVA-CXR

Primary LanguagePython

SLaVA-CXR: Small Language and Vision Assistant for Chest X-ray Report Automation

SLaVA-CXR: Small Language and Vision Assistant for Chest X-ray Report Automation [Paper]

Environment

conda create -n slava_cxr python=3.10 -y
conda activate slava_cxr
pip install --upgrade pip  # enable PEP 660 support
pip install -e .

MODEL

The SLaVA-CXR model can be downloaded in HuggingFace.

Train

The training codes is made available. The training datasets are currently not available.

Evaluation

Evaluation dataset can be any chest X-ray frontal view image paired with a report.
We used MIMIC-CXR and IU-Xray datasets in our paper for the evaluation. We have included IU-Xray questions for impression and findings section automation. Please download IU-Xray dataset LINK.

Findings Generation

CUDA_VISIBLE_DEVICES=0 python -m llava_phi.eval.model_vqa_slava_cxr \
    --model-path ./SLaVA-CXR \
    --question-file iuxray_sample_findings.jsonl \
    --image-folder path_to_iuxray_images \
    --answers-file findings_result.jsonl \
    --conv-mode default \
    --max_new_tokens 512

Impression Summarization

CUDA_VISIBLE_DEVICES=0 python -m llava_phi.eval.model_vqa_slava_cxr \
    --model-path ./SLaVA-CXR \
    --question-file iuxray_sample_impression.jsonl \
    --image-folder path_to_iuxray_images \
    --answers-file impression_result.jsonl \
    --conv-mode default \
    --max_new_tokens 256

Citation

@article{wu2024slava,
  title={SLaVA-CXR: Small Language and Vision Assistant for Chest X-ray Report Automation},
  author={Wu, Jinge and Kim, Yunsoo and Shi, Daqian and Cliffton, David and Liu, Fenglin and Wu, Honghan},
  journal={arXiv preprint arXiv:2409.13321},
  year={2024}
}

Acknowledgement

We used the LLaVA-Phi codes to train our model