-
This repository reproduces the experimental results of a paper "Causal Effect Estimation on Hierarchical Spatial Graph Data" presented in KDD 2023.
-
An example of hierarchical spatial graph data with global and local graphs containing covariates (blue), intervention (green).
- python 3
- To install requirements:
conda env create -f environment.yml
conda activate sinet_env
.
├── README.md
├── config
│ └── GWN-GWN-MLP
│ ├── make_script.py
│ ├── run_script.sh
│ ├── script
│ └── template.yml
├── data
│ ├── experiment
│ ├── sample
│ │ ├──xz <- download sample.zip and unzip it
│ │ └──y <- download sample.zip and unzip it
│ ├── source
│ └── y_scaler.pkl
├── demo_sinet.py <- run this!
├── environment.yml
├── model
│ ├── sinet.py
│ └── template.py
├── out
└── util
├── smoothmax.py
├── util_dataloader.py
├── util_globalgraph.py
├── util_seatgraph.py
└── util_stgraph.py
- The simulation data can be download from here and should be set in the folder
./data/
.
- see
demo_sinet.py
for run a demo. - see
./config/run_script.sh
for commands for running scripts. - Further details are documented within the code.
If you find this repository, e.g., the code and the datasets, useful in your research, please cite the following paper:
@inproceedings{takeuchi2023sinet,
title={Causal Effect Estimation on Hierarchical Spatial Graph Data},
author={Takeuchi, Koh and Nishida, Ryo and Kashima, Hisashi and Onishi, Masaki},
booktitle={the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD '23)},
year={2023}
}