We provide the checkpoint reported in our paper.
Download CIFAR10 checkpoint from cifar10_fid_6_0.ckpt.
Download ImageNet 64x64 checkpoint from imagenet_fid_10_6.ckpt.
Download LSUNCAT 256x256 checkpoint from lsun256_fid_13_0.ckpt.
Using code below to install the package.
pip install -r requirements.txt
You can use the following code to run evaluation on CIFAR10:
python train_cifar10.py --dataset_path your_dataset_path --resume-from checkpoint_path --mode eval
To evaluation ImageNet 64x64, you need first download the reference batch from guided-diffusion/evaluations or one_driver.
python train_imagenet64.py --dataset_path your_dataset_path --resume-from checkpoint_file --fid_path reference_batch_file --mode eval
You can use the following code to run evaluation on CIFAR10:
python train_cifar10.py --dataset_path your_dataset_path --resume-from checkpoint_path --mode sample
python train_imagenet64.py --dataset_path your_dataset_path --resume-from checkpoint_file --mode sample
python lsun_cat_256.py --dataset_path your_dataset_path --resume-from checkpoint_file --mode sample
You can use the following code to run evaluation on CIFAR10:
python train_cifar10.py --dataset_path your_dataset_path --resume-from checkpoint_path --mode train --ckpt_path save_path --device gpu_num
To train ImageNet 64x64, you need first download the reference batch from guided-diffusion/evaluations or one_driver. (for period evaluation)
python train_imagenet64.py --dataset_path your_dataset_path --resume-from checkpoint_file --mode train --fid_path reference_batch_file --ckpt_path save_path --device gpu_num
python lsun_cat_256.py --dataset_path your_dataset_path --resume-from checkpoint_file --mode train --fid_path reference_batch_file --ckpt_path save_path --device gpu_num
You need to download ImageNet 64x64 dataset with format .npz
from ImageNet.
Run code below:
python convert_imagenet_lmdb.py --path_lmdb dataset_to_save --dataset_path npz_path