Prefered/supported version of R is 3.5.3. Use this command to install OmicsON package: install.packages("BiocManager") install.packages("devtools") BiocManager::install(pkgs = c("STRINGdb", "BiocCheck", "mygene")) Sys.setenv(R_REMOTES_NO_ERRORS_FROM_WARNINGS=TRUE) devtools::install_github(repo = "cmujzbit/OmicsON", dependencies = TRUE, force = TRUE) Short analysis example: OmicsON::setUpReactomeMapping( ChEBI2ReactomeFileURL = "https://reactome.org/download/current/ChEBI2Reactome.txt", Ensembl2ReactomeFileURL = "https://reactome.org/download/current/Ensembl2Reactome.txt", UniProt2ReactomeFileURL = "https://reactome.org/download/current/UniProt2Reactome.txt") pathToFileWithLipidomicsData <- system.file(package = "OmicsON", "extdata", "nm-lipidomics.txt") lipidomicsInputData <- read.table(pathToFileWithLipidomicsData, header = TRUE) pathToFileWithTranscriptomicsData <- system.file(package = "OmicsON", "extdata", "nm-transcriptomics.txt") transcriptomicsInputData <- read.table(pathToFileWithTranscriptomicsData, header = TRUE) XDataFrame <- transcriptomicsInputData YDataFrame <- lipidomicsInputData xNamesVector <- as.character(transcriptomicsInputData$symbol) yNamesVector <- as.character(lipidomicsInputData$ChEBI) CcaResultsNoExtention <- OmicsON::makeCanonicalCorrelationAnalysis( xNamesVector = xNamesVector, yNamesVector = yNamesVector, XDataFrame = XDataFrame, YDataFrame = YDataFrame, xCutoff = 0.6, yCutoff = 0.7) OmicsON::plotCanonicalCorrelationAnalysisResults( ccaResults = CcaResultsNoExtention, main = "Structural Correlations (Transcriptomics vs Lipidomics)", thirdLineText = "") PlsResultsNoExtention <- OmicsON::makePartialLeastSquaresRegression( xNamesVector = xNamesVector, yNamesVector = yNamesVector, XDataFrame = XDataFrame, YDataFrame = YDataFrame) OmicsON::plotRmsepForPLS( PLSResult = PlsResultsNoExtention, nCols = 3, nRows = 2, lty = c(2)) lipidomicsInputDataDecoratedByReactome <- OmicsON::decorateByReactomeData( chebiMoleculesDf = lipidomicsInputData, chebiIdsColumnName = "ChEBI", organismTaxonomyId = '9606') ontology2GenesSymboleFromEnsembleFunctionalInteractions <- OmicsON::createFunctionalInteractionsDataFrame( chebiToReactomeDataFrame = lipidomicsInputDataDecoratedByReactome, singleIdColumnName = 'ontologyId', idsListColumnName = 'genesSymbolsFromEnsemble') xNamesVector <- as.character(ontology2GenesSymboleFromEnsembleFunctionalInteractions$genesSymbolsFromEnsemble) yNamesVector <- as.character(ontology2GenesSymboleFromEnsembleFunctionalInteractions$root) XDataFrame <- transcriptomicsInputData YDataFrame <- lipidomicsInputData CcaResultsReactomeEnsembleExtentionOldData <- OmicsON::makeCanonicalCorrelationAnalysis( xNamesVector = xNamesVector, yNamesVector = yNamesVector, XDataFrame = XDataFrame, YDataFrame = YDataFrame, xCutoff = 0.6, yCutoff = 0.7) OmicsON::plotCanonicalCorrelationAnalysisResults( ccaResults = CcaResultsReactomeEnsembleExtentionOldData, main = "Structural Correlations (Transcriptomics vs Lipidomics)", thirdLineText = "Reactome") PlsResultsReactomeEnsembleExtentionOldData <- OmicsON::makePartialLeastSquaresRegression( xNamesVector = xNamesVector, yNamesVector = yNamesVector, XDataFrame = XDataFrame, YDataFrame = YDataFrame ) OmicsON::plotRmsepForPLS( PLSResult = PlsResultsReactomeEnsembleExtentionOldData, nCols = 3, nRows = 2, lty = c(2))