An unofficial visualization tool for chainer, inspired by tensorboard. The toolkit allows visualization of log from chainer.extensions.LogReport
.
Example usage:
model = L.Classifier(MyModel())
optimizer = chainer.optimizers.Adam()
optimizer.setup(model)
train = create_my_data()
train_iter = chainer.iterators.SerialIterator(train, batchsize)
updater = training.StandardUpdater(train_iter, optimizer)
trainer = training.Trainer(updater, (epochs, 'epoch'), out='path/to/output')
trainer.extend(extensions.LogReport(log_name='my_log_data')))
# optional; allows visualization of parameters
trainer.extend(extensions.ParameterStatistics(model))
# Run the training
trainer.run()
and point chainerboard at the output log file to start local http server.
chainerboard path/to/output/my_log_name
now open http://localhost:6006/ to view the log.
Warning
The author of this project is not a professional web programmer. Never use the project on remote server since it may impose serious security risks.
To setup development environment:
pip install -r requirements.txt
For testing,
tox
Build document
python setup.py build_sphinx