/parallel-genomeseq

Parallelization of popular genome sequencing algorithms

Primary LanguageC++

Parallel Genome Sequencing

In bioinformatics, algorithms that compare strings for similarity play a decisive role in genome sequencing. Although today’s research is dominated by programs like BLAST that produce approximate solutions on large datasets, they fundamentally rely on dynamic algorithms such as:

  1. Smith-Waterman algorithm
  2. Needleman-Wunsch algorithm
  3. Hirschberg's algorithm

These three closely related algorithms all fall under the category of dynamic programming algorithms for finding the edit distance of two strings (i.e. a measure for their dissimilarity). Our project consists of exploring different methods for parallelization of these fundamental algorithms while using different techniques (MPI, threading, combination etc.).

Installation

The project is built with CMake. Available options:

  1. -DDEBUG=ON to compile in debug mode
  2. -DVERBOSE=ON to turn on verbose output
  3. -DUSEMPI=ON to use MPI (requires openMPI library installed)
  4. -DUSEOMP=ON to use OpenMP (requires openMP library installed)

Building a release version:

cd build
cmake ..
make

Building a debug version:

cd build
cmake .. -DDEBUG=ON #-DVERBOSE=ON #if need verbose output

Building OpenMP version:

cd build
cmake .. -DUSEOMP=ON
make
cd ..
./bin/sw_solve_small #sw_solve_small is equipped with openmp-parallellocalaligner

Building MPI version:

cd build
cmake .. -DUSEMPI=ON
make
cd ../bin
mpiexec parseq

Development

Please wrap anything using MPI by #ifdef USEMPI ... #endif and anything using OpenMP by #ifdef USEOMP ... #endif. The rule of thumb is do not break serial code when MPI and openMP is not available.

//Usage
#include <memory>
{
  auto la = std::make_unique<SWAligner<Similarity_Matrix>>(str1,str2); //or SWAligner<Similarity_Matrix_Skewed>
  // or use parallel LocalAligner breaking ref into 4 substrings and setting overlaplength = samplelength * 2.0
  auto la = std::make_unique<OMPParallelLocalAligner<Similarity_Matrix_Skewed, SWAligner<Similarity_Matrix_Skewed>>>(row[2],fa_string,4,2.0);
  la->calculateScore();
  //... = la->get...();
}
//Constructor
template <class Similarity_Matrix_Type>
class SWAligner : public LocalAligner <Similarity_Matrix_Type> {
  public:
    SWAligner(std::string_view, std::string_view);
    SWAligner(std::string_view, std::string_view, std::function<float(const char &, const char &)> &&);
}
//API
template <class Similarity_Matrix_Type>
class LocalAligner {
  public:
    virtual float calculateScore() = 0;
    virtual float getScore() const = 0;
    virtual unsigned int getPos() const = 0;
    virtual std::string_view getConsensus_x() const = 0;
    virtual std::string_view getConsensus_y() const = 0;
    virtual const Similarity_Matrix_Type& getSimilarity_matrix() const =0;
};
template <class Similarity_Matrix_Type, class LocalAligner_Type>
class OMPParallelLocalAligner : public ParallelLocalAligner<Similarity_Matrix_Type, LocalAligner_Type> {
  public:
    OMPParallelLocalAligner(std::string_view, std::string_view, int, float);
    OMPParallelLocalAligner(std::string_view, std::string_view, int, float, float);
    OMPParallelLocalAligner(std::string_view, std::string_view, int, float, std::function<float(const char &, const char &)> &&);
    OMPParallelLocalAligner(std::string_view, std::string_view, int, float, std::function<float(const char &, const char &)> &&, float);
    float calculateScore();
    float getScore() const;
    unsigned int getPos() const;
    std::string_view getConsensus_x() const;
    std::string_view getConsensus_y() const;
};
//API for similarity matrix
class Abstract_Similarity_Matrix{
  public:
    virtual void iterate(const std::function<float(const char &, const char &)> &scoring_function,
                         float gap_penalty) = 0;
    virtual std::tuple<Eigen::Index, Eigen::Index, float> find_index_of_maximum() const = 0;
    virtual void print_matrix() const = 0;
    virtual const Eigen::MatrixXf &get_matrix() const = 0;
    virtual float operator()(Eigen::Index row, Eigen::Index col) const = 0;
};

Usage

Run the binary parsequal in the bin directory.

-Generate a modified input file with fields: index, QNAME, SEQ, POS (POS="true" alignment positions extracted from a SAM file), solve the small dataset using Smith-Waterman, and evaluate the alignment result wrt "true" positions using a py script:

#sw_solve_small
cd build
cmake ..
make sw_solve_small
cd ../py
python reader.py gen_input
cd ..
./bin/sw_solve_small
cd py
python eval.py sw_solve_small
#test
cd build
cmake ..
make
../bin/tests

#Coarse-grained MPI
cd build
cmake -DUSEMPI=ON ..
make
#do the next part once to prepare input for MPI
cd ../py
python reader.py mpi_prepare_input
cd ..
mpiexec -np {node_num, ie. 6} ./bin/mpi_sw_solve_small

#MPI Benchmark on UNIPROT
cd build
cmake -DUSEMPI=ON ..
make
#do the next part once to prepare input
cd ../py
python reader.py uniprot_prepare
cd ..
mpiexec -np {node_num, ie. 6} ./bin/mpi_sw_solve_uniprot

#Coarse-grained OMP
cd build
cmake -DUSEOMP=ON ..
make
cd ..
./bin/sw_solve_small 
#create fixed number of subtasks by breaking the reference string into several pieces,
#number of subtasks and length of overlaps are controlled by pLocalAligner constructor:
#auto la = std::make_unique<OMPParallelLocalAligner<Similarity_Matrix_Skewed, SWAligner<Similarity_Matrix_Skewed>>>(row[2],fa_string,4,2.0);
#openmp automatically distribute subtasks to available processors
#number of threads can be controlled by setting env like (execute in bash): `export OMP_NUM_THREADS=16`

#Fine-grained OMP
cd build
cmake -DUSEOMP=ON ..
make
cd ..
bin/omp_sw_solve_small solve_small n_reads n_threads
(e.g.) bin/omp_sw_solve_small solve_small 3 2

Benchmarking Specific Usage

Fine-grained OMP

sh benchmark/leonhardsetup.sh

#download chromosome22 of hg19 reference from USCS database
sh benchmark/ompfg/data_get_chr22.sh

module load gcc/4.8.2 python/3.6.1
#Generate a custom reference from a section of the downloaded hg19 chr22 and a set of custom reads
#Default: |ref|=30k, n_reads=100, |read|=100
python py/ompfg_data_prep.py  --option gen_ref_custom
#Reference default output: data/custom_ref_1.fa
python py/ompfg_data_prep.py  --option gen_reads_custom
#Reference default input: data/custom_ref_1.fa
#Reads default output: data/custom_reads_1.csv

#examples:
python py/ompfg_data_prep.py  --option gen_ref_custom --start_pos 0 --ref_len 50000000 --remove_N=true
python py/ompfg_data_prep.py  --option gen_reads_custom --read_len=? --n_reads=?

rm -rf build
mkdir build
cd build
module load gcc
module load cmake

#Original ompfg benchmark
cmake .. -DUSEOMP=ON
#ompfg with multithreaded SIMD benchmark
cmake .. -DUSEOMP=ON -DMTSIMD=ON

make
cd ..

#Run OMP finegrain Smith-Waterman with different n_threads settings, append times to a csv
#arguments to the following command are specified in the sh file. Check for correctness if necessary
#cmd=$project_dir"/bin/omp_sw_solve_small "$code_section" "$n_reads" "$n_threads" "$finegrain_type" "$timing_file_path" "$ref_file_path" "$reads_file_path" "$mt_simd

#Original ompfg benchmark
sh benchmark/ompfg/ompfg_bench.sh
#ompfg with multithreaded SIMD benchmark
sh benchmark/ompfg/ompfg_mtsimd_bench.sh

#Visualization of numerical results in csv
module load gcc/4.8.2 python/3.6.1
python py/eval.py --option ompfg --yaxis gcups --plot_type box_plot --fit false