- Trash semantic segmentation
- Input: 512 x 512 Image
- Train: 2617 images
- Validation: 655 images
- Output: Category classification for each pixel
- Class(11): Background, General trash, Paper, Paper pack, Metal, Glass, Plastic, Styrofoam, Plastic bag, Battery, Clothing
image-classification-level1-02/
βββ input/data/
β βββ batch_01_vt/
β βββ batch_02_vt/
β βββ batch_03/
β βββ train.json
β βββ val.json
β βββ train_all.json
β βββ test.json
βββ mmsegmentation/
β βββ configs/
β βββ mmdetection library folders and files ...
β βββ train.py
β βββ inference.py
βββ util/
input/data/
: download from https://stages.ai/
cd mmsegmentation
python train.py
python inference.py
cd util
converting visualize_CSVs py to ipynb
jupyter notebook visualize_CSVs.ipynb
# set result csv files
csv_names = ['Unet_resnet50.csv', 'deeplabv3_resnet50_31epoch.csv']
- Ubuntu 18.04.5
- Python 3.8.5
- pytorch 1.7.1
- torchvision 0.8.2
Install packages : pip install -r requirements.txt
- CPU: 8 x Intel(R) Xeon(R) Gold 5220 CPU
- GPU: V100
- RAM: 88GB
Name @github |
---|
κ³ μ¬μ± @κ³ μ¬μ± |
κΉμ±λ―Ό @ksm0517 |
λ°μ§λ―Ό @λ°μ§λ―Ό |
λ°μ§ν @ppjh8263 |
μ¬μΈλ Ή @Seryoung Shim |
μ€νμ @Yoon Hajung |