SSD是一种Object Detection方法。本文是基于论文SSD: Single Shot MultiBox Detector,实现的keras版本。
该文章在既保证速度,又要保证精度的情况下,提出了SSD物体检测模型,与现在流行的检测模型一样,将检测过程整个成一个single deep neural network。便于训练与优化,同时提高检测速度。 SSD将输出一系列离散化(discretization)的bounding boxes,这些bounding boxes是在不同层次(layers)上的feature maps上生成的,并且有着不同的aspect ratio。
- 模型对载具的检测
- 模型对动物的检测
- 模型的视频检测
cv2==3.3.0
keras==2.2.0
matplotlib==2.1.0
tensorflow==1.3.0
numpy==1.13.3
如果想跑通视频模块,则需额外pip install scikit-video
git clone git@github.com:kuhung/SSD_keras.git
cd SSD_keras
- Download model weight
weights_SSD300.hdf5
here
cp weights_SSD300.hdf5 into SSD_keras
- 对于图片的检测
- 若要剪切图片为下一步处理做准备
- 检测视频
cd video_utils
python videotest_example.py hy.mp4
参考资料
SSD: Single Shot MultiBox Detector