/joliGAN

Semantic Image-to-Image Translation for Domain Adaptation

Primary LanguagePythonOtherNOASSERTION

Image-to-Image Translation with GANs and Diffusion for Real-World Applications

JoliGAN provides easy-to-use GAN and Diffusion models for unpaired and paired image to image translation tasks, including domain adaptation. In a nutshell, JoliGAN allows for fast and stable training with astonishing results. A server with REST API is provided that allows for simplified deployment and usage.

JoliGAN has a large scope of options and parameters. To not get overwhelmed, follow the simple steps below. There are then links to more detailed documentation on models, dataset formats, and data augmentation.

Use cases

  • AR and metaverse: replace any image element with super-realistic objects
  • Image manipulation: seamlessly insert or remove objects/elements in images
  • Image to image translation while preserving semantic, e.g. existing source dataset annotations
  • Simulation to reality translation while preserving elements, metrics, ...
  • Image to image translation to cope with scarce data

This is achieved by combining powerful and customized generator architectures, bags of discriminators, and configurable neural networks and losses that ensure conservation of fundamental elements between source and target images.

Example results

Image translation while preserving the class

Mario to Sonic while preserving the action (running, jumping, ...)

Clipboard - June 6, 2022 9 44 PM Clipboard - June 5, 2022 12 02 PM

Object insertion

Car insertion (BDD100K) with Diffusion image image

Object removal

Glasses removal with GANs

Clipboard - November 9, 2022 4_33 PM Clipboard - November 9, 2022 10_40 AM

AR

Real-time ring virtual try-on with GANs

video_rings_linkedin.mp4

Style transfer while preserving label boxes (e.g. cars, pedestrians, street signs, ...)

Day to night (BDD100K) with Transformers and GANs image

Clear to snow (BDD100K) by applying a generator multiple times to add snow incrementally image

Clear to overcast (BDD100K) image

Clear to rainy (BDD100K) image image

Features


Quick Start

Prerequisites

  • Linux
  • Python 3
  • CPU or NVIDIA GPU + CUDA CuDNN

Installation

Clone this repo:

git clone --recursive https://github.com/jolibrain/joliGAN.git
cd joliGAN

Install PyTorch and other dependencies (torchvision, visdom with:

pip install -r requirements.txt --upgrade

Dataset formats

Image to image without semantics

Example: horse to zebra from two sets of images Dataset: https://www.deepdetect.com/joligan/datasets/horse2zebra.zip

horse2zebra/
horse2zebra/trainA  # horse images
horse2zebra/trainB  # zebra images
horse2zebra/testA
horse2zebra/testB

Image to image with class semantics

Example: font number conversion Dataset: https://www.deepdetect.com/joligan/datasets/mnist2USPS.zip

mnist2USPS/
mnist2USPS/trainA
mnist2USPS/trainA/0  # images of number 0
mnist2USPS/trainA/1  # images of number 1
mnist2USPS/trainA/2  # images of number 2
...
mnist2USPS/trainB
mnist2USPS/trainB/0  # images of target number 0
mnist2USPS/trainB/1  # images of target number 1
mnist2USPS/trainB/2  # images of target number 2

Image to image with mask semantics

Example: Add glasses to a face without modifying the rest of the face Dataset: https://www.deepdetect.com/joligan/datasets/noglasses2glasses_ffhq_mini.zip Full dataset: https://www.deepdetect.com/joligan/datasets/noglasses2glasses_ffhq.zip

noglasses2glasses_ffhq_mini
noglasses2glasses_ffhq_mini/trainA
noglasses2glasses_ffhq_mini/trainA/img
noglasses2glasses_ffhq_mini/trainA/img/0000.png # source image, e.g. face without glasses
...
noglasses2glasses_ffhq_mini/trainA/bbox
noglasses2glasses_ffhq_mini/trainA/bbox/0000.png # source mask, e.g. mask around eyes
...
noglasses2glasses_ffhq_mini/trainA/paths.txt # list of associated source / mask images
noglasses2glasses_ffhq_mini/trainB
noglasses2glasses_ffhq_mini/trainB/img
noglasses2glasses_ffhq_mini/trainB/img/0000.png # target image, e.g. face with glasses
...
noglasses2glasses_ffhq_mini/trainB/bbox
noglasses2glasses_ffhq_mini/trainB/bbox/0000.png # target mask, e.g. mask around glasses
...
noglasses2glasses_ffhq_mini/trainB/paths.txt # list of associated target / mask images

Image to image with bounding box semantics

Example: Super Mario to Sonic while preserving the position and action, e.g. crouch, jump, still, ... Dataset: https://www.deepdetect.com/joligan/datasets/online_mario2sonic_lite.zip Full dataset: https://www.deepdetect.com/joligan/datasets/online_mario2sonic_full.tar

online_mario2sonic_lite
online_mario2sonic_lite/mario
online_mario2sonic_lite/mario/bbox
online_mario2sonic_lite/mario/bbox/r_mario_frame_19538.jpg.txt # contains bboxes, see format below
online_mario2sonic_lite/mario/imgs
online_mario2sonic_lite/mario/imgs/mario_frame_19538.jpg
online_mario2sonic_lite/mario/all.txt # list of associated source image / bbox file, 
...
online_mario2sonic_lite/sonic
online_mario2sonic_lite/sonic/bbox
online_mario2sonic_lite/sonic/bbox/r_sonic_frame_81118.jpg.txt
online_mario2sonic_lite/sonic/imgs
online_mario2sonic_lite/sonic/imgs/sonic_frame_81118.jpg
online_mario2sonic_lite/sonic/all.txt # list of associated target image / bbox file
...
online_mario2sonic_lite/trainA
online_mario2sonic_lite/trainA/paths.txt # symlink to ../mario/all.txt
online_mario2sonic_lite/trainB
online_mario2sonic_lite/trainB/paths.txt # symlink to ../sonic/all.txt

List file format:

cat online_mario2sonic_lite/mario/all.txt
mario/imgs/mario_frame_19538.jpg mario/bbox/r_mario_frame_19538.jpg.txt

Bounding boxes format, e.g. r_mario_frame_19538.jpg.txt:

2 132 167 158 218

in this order:

cls xmin ymin xmax ymax

where cls is the class, in this dataset 2 means running.

Image to image with multiple semantics: bounding box and class

Example: Image seasonal modification while preserving objects with mask (cars, pedestrians, ...) and overall image weather (snow, rain, clear, ...) with class Dataset: https://www.deepdetect.com/joligan/datasets/daytime2dawn_dusk_lite.zip

daytime2dawn_dusk_lite
daytime2dawn_dusk_lite/dawn_dusk
daytime2dawn_dusk_lite/dawn_dusk/img
daytime2dawn_dusk_lite/dawn_dusk/mask
daytime2dawn_dusk_lite/daytime
daytime2dawn_dusk_lite/daytime/img
daytime2dawn_dusk_lite/daytime/mask
daytime2dawn_dusk_lite/trainA
daytime2dawn_dusk_lite/trainA/paths.txt
daytime2dawn_dusk_lite/trainB
daytime2dawn_dusk_lite/trainB/paths.txt

paths.txt format:

cat trainA/paths.txt
daytime/img/00054602-3bf57337.jpg 2 daytime/mask/00054602-3bf57337.png

in this order: source image path, image class, image mask, where image class in this dataset represents the weather class.

Other semantics

Other semantics are possible, i.e. an algorithm that runs on both source and target

JoliGAN training

Training requires the following:

  • GPU
  • a checkpoints directory to be specified in which model weights are stored
  • a Visdom server, by default the training script starts a Visdom server on http://0.0.0.0:8097 if none is running
  • Go to http://localhost:8097 to follow training losses and image result samples

JoliGAN has (too) many options, for finer grained control, see the full option list.

Training image to image without semantics

Modify as required and run with the following line command:

python3 train.py --dataroot /path/to/horse2zebra --checkpoints_dir /path/to/checkpoints --name horse2zebra \
--output_display_env horse2zebra --data_load_size 256 --data_crop_size 256 --train_n_epochs 200 \
--dataset_mode unaligned --train_n_epochs_decay 0 --model_type cut --G_netG mobile_resnet_attn

Training with class semantics :

python3 train.py --dataroot /path/to/mnist2USPS --checkpoints_dir /path/to/checkpoints --name mnist2USPS \
--output_display_env mnist2USPS --data_load_size 180 --data_crop_size 180 --train_n_epochs 200 \
--data_dataset_mode unaligned_labeled_cls --train_n_epochs_decay 0 --model_type cut --cls_semantic_nclasses 10 \
--train_sem_use_label_B --train_semantic_cls --dataaug_no_rotate --dataaug_D_noise 0.001 \
--G_netG mobile_resnet_attn

Training with mask semantics :

python3 train.py --dataroot /path/to/noglasses2glasses_ffhq/ --checkpoints_dir /path/to/checkpoints/ \
--name noglasses2glasses --output_display_env noglasses2glasses --output_display_freq 200 --output_print_freq 200 \
--train_G_lr 0.0002 --train_D_lr 0.0001 --train_sem_lr_f_s 0.0002 --data_crop_size 256 --data_load_size 256 \
--data_dataset_mode unaligned_labeled_mask --model_type cut --train_semantic_mask --train_batch_size 2 \
--train_iter_size 1 --model_input_nc 3 --model_output_nc 3 --f_s_net unet --train_mask_f_s_B \
--train_mask_out_mask --f_s_semantic_nclasses 2 --G_netG mobile_resnet_attn --alg_cut_nce_idt \
--train_sem_use_label_B --D_netDs projected_d basic vision_aided --D_proj_interp 256 \
--D_proj_network_type efficientnet --train_G_ema --G_padding_type reflect --dataaug_no_rotate \
--data_relative_paths

Training with bounding box semantics and online sampling around boxes as data augmentation:

python3 train.py --dataroot /path/to/online_mario2sonic/ --checkpoints_dir /path/to/checkpoints/ \
--name mario2sonic --output_display_env mario2sonic --output_display_freq 200 --output_print_freq 200 \
--train_G_lr 0.0002 --train_D_lr 0.0001 --train_sem_lr_f_s 0.0002 --data_crop_size 128 --data_load_size 180 \
--data_dataset_mode unaligned_labeled_mask_online --model_type cut --train_semantic_m --train_batch_size 2 \
--train_iter_size 1 --model_input_nc 3 --model_output_nc 3 --f_s_net unet --train_mask_f_s_B \
--train_mask_out_mask --data_online_creation_crop_size_A 128 --data_online_creation_crop_delta_A 50 \
--data_online_creation_mask_delta_A 50 --data_online_creation_crop_size_B 128 \
--data_online_creation_crop_delta_B 15 --data_online_creation_mask_delta_B 15 \
--f_s_semantic_nclasses 2 --G_netG segformer_attn_conv \
--G_config_segformer models/configs/segformer/segformer_config_b0.py --alg_cut_nce_idt --train_sem_use_label_B \
--D_netDs projected_d basic vision_aided --D_proj_interp 256 --D_proj_network_type vitsmall \
--train_G_ema --G_padding_type reflect --dataaug_no_rotate --data_relative_paths

Training object insertion :

Trains a diffusion model to insert glasses onto faces.

python3 train.py --dataroot /path/to/noglasses2glasses_ffhq/ --checkpoints_dir /path/to/checkpoints/ \
--name noglasses2glasses --data_direction BtoA --output_display_env noglasses2glasses --gpu_ids 0,1 \
--model_type palette --train_batch_size 4 --train_iter_size 16 --model_input_nc 3 --model_output_nc 3 \
--data_relative_paths --train_G_ema --train_optim radam --data_dataset_mode self_supervised_labeled_mask \
--data_load_size 256 --data_crop_size 256 --G_netG unet_mha --data_online_creation_rand_mask_A \
--train_G_lr 0.00002 --train_n_epochs 400 --dataaug_no_rotate --output_display_freq 10000 \
--train_optim adamw --G_nblocks 2

JoliGAN inference

JoliGAN reads the model configuration from a generated train_config.json file that is stored in the model directory. When loading a previously trained model, make sure the the train_config.json file is in the directory.

Python scripts are provided for inference, that can be used as a baseline for using a model in another codebase.

Generate an image with a GAN generator model

cd scripts
python3 gen_single_image.py --model-in-file /path/to/model/latest_net_G_A.pth \
--img-in /path/to/source.jpg --img-out target.jpg

Generate an image with a diffusion model

Using a pretrained glasses insertion model (see above):

python3 gen_single_image_diffusion.py --model-in-file /path/to/model/latest_net_G_A.pth --img-in /path/to/source.jpg\
--mask-in /path/to/mask.jpg --img-out target.jpg  --img-size 256

The mask image has 1 where to insert the object and 0 elsewhere.

JoliGAN server

Ensure everything is installed

pip install fastapi uvicorn

Then run server:

server/run.sh --host localhost --port 8000

Unit tests

To launch tests before new commits:

bash scripts/run_tests.sh /path/to/dir

Models

Name Paper
CycleGAN https://arxiv.org/abs/1703.10593
CyCADA https://arxiv.org/abs/1711.03213
CUT https://arxiv.org/abs/2007.15651
RecycleGAN https://arxiv.org/abs/1808.05174
StyleGAN2 https://arxiv.org/abs/1912.04958

Generator architectures

Architecture Number of parameters
Resnet 9 blocks 11.378M
Mobile resnet 9 blocks 1.987M
Resnet attn 11.823M
Mobile resnet attn 2.432M
Segformer b0 4.158M
Segformer attn b0 4.60M
Segformer attn b1 14.724M
Segformer attn b5 83.016M
UNet with mha ~60M configurable
ITTR ~30M configurable

Docker build

To build a docker for joliGAN server:

docker build -t jolibrain/joligan_build -f docker/Dockerfile.build .
docker build -t jolibrain/joligan_server -f docker/Dockerfile.server .

To run the joliGAN docker:

nvidia-docker run jolibrain/myjoligan

Code format

If you want to contribute please use black code format. Install:

pip install black 

Usage :

black .

If you want to format the code automatically before every commit :

pip install pre-commit
pre-commit install

Authors

JoliGAN is created and maintained by Jolibrain.

Code is making use of pytorch-CycleGAN-and-pix2pix, CUT, AttentionGAN, MoNCE among others.