-
Zero-shot TTS: Input a 5-second vocal sample and experience instant text-to-speech conversion.
-
Few-shot TTS: Fine-tune the model with just 1 minute of training data for improved voice similarity and realism.
-
Cross-lingual Support: Inference in languages different from the training dataset, currently supporting English, Japanese, and Chinese.
-
WebUI Tools: Integrated tools include voice accompaniment separation, automatic training set segmentation, Chinese ASR, and text labeling, assisting beginners in creating training datasets and GPT/SoVITS models.
Check out our demo video here!
Unseen speakers few-shot fine-tuning demo:
few.shot.fine.tuning.demo.mp4
For users in the China region, you can click here to use AutoDL Cloud Docker to experience the full functionality online.
- Python 3.9, PyTorch 2.0.1, CUDA 11
- Python 3.10.13, PyTorch 2.1.2, CUDA 12.3
- Python 3.9, PyTorch 2.2.2, macOS 14.4.1 (Apple silicon)
- Python 3.9, PyTorch 2.2.2, CPU devices
Note: numba==0.56.4 requires py<3.11
If you are a Windows user (tested with win>=10), you can download the integrated package and double-click on go-webui.bat to start GPT-SoVITS-WebUI.
Users in the China region can download the package by clicking the link and then selecting "Download a copy." (Log out if you encounter errors while downloading.)
conda create -n GPTSoVits python=3.9
conda activate GPTSoVits
bash install.sh
Note: The models trained with GPUs on Macs result in significantly lower quality compared to those trained on other devices, so we are temporarily using CPUs instead.
- Install Xcode command-line tools by running
xcode-select --install
. - Install FFmpeg by running
brew install ffmpeg
. - Install the program by running the following commands:
conda create -n GPTSoVits python=3.9
conda activate GPTSoVits
pip install -r requirements.txt
conda install ffmpeg
sudo apt install ffmpeg
sudo apt install libsox-dev
conda install -c conda-forge 'ffmpeg<7'
Download and place ffmpeg.exe and ffprobe.exe in the GPT-SoVITS root.
Install Visual Studio 2022 (Korean TTS Only)
brew install ffmpeg
pip install -r requirements.txt
- Regarding image tags: Due to rapid updates in the codebase and the slow process of packaging and testing images, please check Docker Hub for the currently packaged latest images and select as per your situation, or alternatively, build locally using a Dockerfile according to your own needs.
- Environment Variables:
- is_half: Controls half-precision/double-precision. This is typically the cause if the content under the directories 4-cnhubert/5-wav32k is not generated correctly during the "SSL extracting" step. Adjust to True or False based on your actual situation.
- Volumes Configuration,The application's root directory inside the container is set to /workspace. The default docker-compose.yaml lists some practical examples for uploading/downloading content.
- shm_size: The default available memory for Docker Desktop on Windows is too small, which can cause abnormal operations. Adjust according to your own situation.
- Under the deploy section, GPU-related settings should be adjusted cautiously according to your system and actual circumstances.
docker compose -f "docker-compose.yaml" up -d
As above, modify the corresponding parameters based on your actual situation, then run the following command:
docker run --rm -it --gpus=all --env=is_half=False --volume=G:\GPT-SoVITS-DockerTest\output:/workspace/output --volume=G:\GPT-SoVITS-DockerTest\logs:/workspace/logs --volume=G:\GPT-SoVITS-DockerTest\SoVITS_weights:/workspace/SoVITS_weights --workdir=/workspace -p 9880:9880 -p 9871:9871 -p 9872:9872 -p 9873:9873 -p 9874:9874 --shm-size="16G" -d breakstring/gpt-sovits:xxxxx
Download pretrained models from GPT-SoVITS Models and place them in GPT_SoVITS/pretrained_models
.
Download G2PW models from G2PWModel-v2-onnx.zip, unzip and rename to G2PWModel
, and then place them in GPT_SoVITS\text
.(Chinese TTS Only)
For UVR5 (Vocals/Accompaniment Separation & Reverberation Removal, additionally), download models from UVR5 Weights and place them in tools/uvr5/uvr5_weights
.
Users in the China region can download these two models by entering the links below and clicking "Download a copy" (Log out if you encounter errors while downloading.)
-
G2PWModel_1.1.zip(Download G2PW models, unzip and rename to
G2PWModel
, and then place them inGPT_SoVITS\text
.
For Chinese ASR (additionally), download models from Damo ASR Model, Damo VAD Model, and Damo Punc Model and place them in tools/asr/models
.
Or Download FunASR Model from FunASR Model, unzip and replace tools/asr/models
.(Log out if you encounter errors while downloading.)
For English or Japanese ASR (additionally), download models from Faster Whisper Large V3 and place them in tools/asr/models
. Also, other models may have the similar effect with smaller disk footprint.
Users in the China region can download this model by entering the links below
-
Faster Whisper Large V3 (Click "Download a copy", log out if you encounter errors while downloading.)
-
Faster Whisper Large V3 (HuggingFace mirror site)
The TTS annotation .list file format:
vocal_path|speaker_name|language|text
Language dictionary:
- 'zh': Chinese
- 'ja': Japanese
- 'en': English
- 'ko': Korean
- 'yue': Cantonese
Example:
D:\GPT-SoVITS\xxx/xxx.wav|xxx|en|I like playing Genshin.
Double-click go-webui.bat
or use go-webui.ps
if you want to switch to V1,then double-clickgo-webui-v1.bat
or use go-webui-v1.ps
python webui.py <language(optional)>
if you want to switch to V1,then
python webui.py v1 <language(optional)>
Or maunally switch version in WebUI
1.Fill in the audio path
2.Slice the audio into small chunks
3.Denoise(optinal)
4.ASR
5.Proofreading ASR transcriptions
6.Go to the next Tab, then finetune the model
Double-click go-webui-v2.bat
or use go-webui-v2.ps
,then open the inference webui at 1-GPT-SoVITS-TTS/1C-inference
python GPT_SoVITS/inference_webui.py <language(optional)>
OR
python webui.py
then open the inference webui at 1-GPT-SoVITS-TTS/1C-inference
New Features:
1.Support Korean and Cantonese
2.An optimized text frontend
3.Pre-trained model extended from 2k hours to 5k hours
4.Improved synthesis quality for low-quality reference audio
Use v2 from v1 environment:
1.pip install -r requirements.txt to update some packages
2.clone the latest codes from github
3.download v2 pretrained models from huggingface and put them into GPT_SoVITS\pretrained_models\gsv-v2final-pretrained
Chinese v2 additional: G2PWModel_1.1.zip(Download G2PW models, unzip and rename to G2PWModel
, and then place them in GPT_SoVITS\text
.
-
High Priority:
- Localization in Japanese and English.
- User guide.
- Japanese and English dataset fine tune training.
-
Features:
- Zero-shot voice conversion (5s) / few-shot voice conversion (1min).
- TTS speaking speed control.
-
Enhanced TTS emotion control. - Experiment with changing SoVITS token inputs to probability distribution of GPT vocabs (transformer latent).
- Improve English and Japanese text frontend.
- Develop tiny and larger-sized TTS models.
- Colab scripts.
- Try expand training dataset (2k hours -> 10k hours).
- better sovits base model (enhanced audio quality)
- model mix
Use the command line to open the WebUI for UVR5
python tools/uvr5/webui.py "<infer_device>" <is_half> <webui_port_uvr5>
This is how the audio segmentation of the dataset is done using the command line
python audio_slicer.py \
--input_path "<path_to_original_audio_file_or_directory>" \
--output_root "<directory_where_subdivided_audio_clips_will_be_saved>" \
--threshold <volume_threshold> \
--min_length <minimum_duration_of_each_subclip> \
--min_interval <shortest_time_gap_between_adjacent_subclips>
--hop_size <step_size_for_computing_volume_curve>
This is how dataset ASR processing is done using the command line(Only Chinese)
python tools/asr/funasr_asr.py -i <input> -o <output>
ASR processing is performed through Faster_Whisper(ASR marking except Chinese)
(No progress bars, GPU performance may cause time delays)
python ./tools/asr/fasterwhisper_asr.py -i <input> -o <output> -l <language> -p <precision>
A custom list save path is enabled
Special thanks to the following projects and contributors:
Thankful to @Naozumi520 for providing the Cantonese training set and for the guidance on Cantonese-related knowledge.