This is an implementation of paper Certified Edge Unlearning for Graph Neural Networks. We provide the code of graph edge unlearning. In addition, we present the code for reproducing the experiments.
- tqdm/numpy/pandas/sklearn/matplotlib/seaborn
- Pytorch >= 1.09
- pyg (torch_geometric)
- DeepRobust
- StellarGraph
python experiment.py -rq bound
python experiment.py -rq unlearn
python experiment.py -rq efficiency
python experiment.py -rq efficacy
python experiment.py --rq epsilon
python experiment.py --rq cgu_compare
- -g, the ID of a GPU you want to use. Default: -1 (using CPU)
- -edges, a list, indicates the numbers of edges you want to unlearn. Default: [100, 200, 400, 800, 1000].
- -targets, a list, indicates what target models you want to evaluate. Default:['gcn', 'sage', 'gin'].
- -datasets, a list, indicate what datasets you want to use. Default:['cora', 'citeseer', 'cs'].