/zerowaste

[CVPR 2022] ZeroWaste Dataset: Towards Deformable Object Segmentation in Cluttered Scenes

Primary LanguagePythonMIT LicenseMIT

[CVPR 2022] ZeroWaste: Towards Deformable Object Segmentation in Cluttered Scenes

DOI Creative Commons License Image This is the official repository of the ZeroWaste project arxiv. Our ZeroWaste dataset distributed under Creative Commons Attribution-NonCommercial 4.0 International License can be found here.

Supervised experiments

Requirements

Training

To train the supervised methods (DeeplabV3+ or Mask R-CNN), use the command below:

# train deeplab on ZeroWaste data
python deeplab/train_net.py --config-file deeplab/configs/zerowaste_config.yaml --dataroot /path/to/zerowaste/data/ (optional) --resume OUTPUT_DIR /deeplab/outputs/*experiment_name* (optional) MODEL.WEIGHTS /path/to/checkpoint.pth

# train Mask R-CNN on ZeroWaste\TACO-zerowaste data
python maskrcnn/train_net.py --config-file maskrcnn/configs/*config*.yaml (optional, only use if trained on TACO-zerowaste) --taco --dataroot /path/to/zerowaste/data/ (optional) --resume OUTPUT_DIR /maskrcnn/outputs/*experiment_name* (optional) --MODEL.WEIGHTS /path/to/checkpoint.pth

# train ReCo on ZeroWasteAug data
python reco_aug/train_sup.py --dataset zerowaste --num_labels 0 --seed 1

Evaluation

The checkpoints for the experiments reported in our paper can be found here. Please use the following code to evaluate the model on our dataset:

# evaluate the pretrained deeplab ZeroWaste:
python deeplab/train_net.py --config-file deeplab/configs/zerowaste_config.yaml --dataroot /path/to/zerowaste-or-taco/data/  --eval-only OUTPUT_DIR /deeplab/outputs/results/ --MODEL.WEIGHTS path/to/checkpoint.pth

# evaluate the pretrained Mask R-CNN on ZeroWaste\TACO-zerowaste:
python deeplab/train_net.py --config-file deeplab/configs/*config*.yaml (optional, only use if evaluated on TACO-zerowaste) --taco --dataroot /path/to/zerowaste-or-taco/data/  --eval-only OUTPUT_DIR /maskrcnn/outputs/*ex

# evaluate the pretrained ReCo-sup on ZeroWasteAug
python reco_aug/test_sup.py --dataset zerowaste --num_labels 0 --seed 1 --checkpoint path/to/checkpoint.pth

Semi-supervised experiments

We used the official implementation of ReCo with minor modification in data loading for our experiments.

Requirements

  • Python 3.8
  • pytorch 1.8

Data

Please download and unzip the ZeroWaste-f, ZeroWasteAug, and ZeroWaste-s (in reco_org/dataset and reco_aug/dataset) for the semi-zupervised experiments.

Training

To train the model from scratch with the hyperparameters used in our experiments:

python reco_aug/train_semisup.py --dataset zerowaste --num_labels 60 --apply_aug classmix --apply_reco

Evaluation

The trained model checkpoints can be found here. The following command runs inference on the given data:

python reco_aug/test_sup.py --dataset zerowaste --num_labels 0 --apply_aug classmix --apply_reco --checkpoint path/to/checkpoint.pth

Weakly-supervised experiments

We used the official implementation of Puzzle-Cam

Requirements

  • Python 3.8, PyTorch 1.7.0, and more in requirements.txt
  • CUDA 10.1, cuDNN 7.6.5

Please download the ZeroWaste-w dataset for binary classification. A pretrained binary classifier used in our experiments can be found here.

For Puzzle-Cam trained with 4-class image-level labels

cd puzzlecam_4_classes
bash run.sh

For Puzzle-Cam trained with binary before/after image-level labels

cd puzzlecam_binary
bash run.sh

Citation

Please cite our paper:

@article{zerowaste,
  author =       {Dina Bashkirova, Mohamed Abdelfattah, Ziliang Zhu, James Akl,    Fadi Alladkani, Ping Hu, Vitaly Ablavsky, Berk Calli, Sarah Adel Bargal and Kate Saenko},
  title =        {ZeroWaste Dataset: Towards Deformable Object Segmentation in Cluttered Scenes},
  howpublished = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  year =         {2022}
}