/GaussianTalker_exp

Variations of “GaussianTalker: Real-Time High-Fidelity Talking Head Synthesis with Audio-Driven 3D Gaussian Splatting” for the ACMMM rebuttal

Primary LanguagePythonOtherNOASSERTION

GaussianTalker: Real-Time High-Fidelity Talking Head Synthesis with Audio-Driven 3D Gaussian Splatting


This is our official implementation of the paper

"GaussianTalker: Real-Time High-Fidelity Talking Head Synthesis with Audio-Driven 3D Gaussian Splatting"

by Kyusun Cho*, Joungbin Lee*, Heeji Yoon*, Yeobin Hong, Jaehoon Ko, Sangjun Ahn, Seungryong Kim

Introduction

image

For more information, please check out our Paper and our Project page.

Installation

We implemented & tested GaussianTalker with NVIDIA RTX 3090 and A6000 GPU.

Run the below codes for the environment setting. ( details are in requirements.txt )

git clone https://github.com/joungbinlee/GaussianTalker.git
cd GaussianTalker
git submodule update --init --recursive
conda create -n GaussianTalker python=3.7 
conda activate GaussianTalker

pip install -r requirements.txt
pip install -e submodules/custom-bg-depth-diff-gaussian-rasterization
pip install -e submodules/simple-knn
pip install "git+https://github.com/facebookresearch/pytorch3d.git"
pip install tensorflow-gpu==2.8.0
pip install --upgrade "protobuf<=3.20.1"

Download Dataset

We used talking portrait videos from AD-NeRF, GeneFace and HDTF dataset. These are static videos whose average length are about 3~5 minutes.

You can see an example video with the below line:

wget https://github.com/YudongGuo/AD-NeRF/blob/master/dataset/vids/Obama.mp4?raw=true -O data/obama/obama.mp4

We also used SynObama for cross-driven setting inference.

Data Preparation

  • prepare face-parsing model.
wget https://github.com/YudongGuo/AD-NeRF/blob/master/data_util/face_parsing/79999_iter.pth?raw=true -O data_utils/face_parsing/79999_iter.pth

Put "01_MorphableModel.mat" to data_utils/face_tracking/3DMM/

cd data_utils/face_tracking
python convert_BFM.py
cd ../../
python data_utils/process.py ${YOUR_DATASET_DIR}/${DATASET_NAME}/${DATASET_NAME}.mp4 
  • Obtain AU45 for eyes blinking

Run FeatureExtraction in OpenFace, rename and move the output CSV file to (your dataset dir)/(dataset name)/au.csv.

├── (your dataset dir)
│   | (dataset name)
│       ├── gt_imgs
│           ├── 0.jpg
│           ├── 1.jgp
│           ├── 2.jgp
│           ├── ...
│       ├── ori_imgs
│           ├── 0.jpg
│           ├── 0.lms
│           ├── 1.jgp
│           ├── 1.lms
│           ├── ...
│       ├── parsing
│           ├── 0.png
│           ├── 1.png
│           ├── 2.png
│           ├── 3.png
│           ├── ...
│       ├── torso_imgs
│           ├── 0.png
│           ├── 1.png
│           ├── 2.png
│           ├── 3.png
│           ├── ...
│       ├── au.csv
│       ├── aud_ds.npy
│       ├── aud_novel.wav
│       ├── aud_train.wav
│       ├── aud.wav
│       ├── bc.jpg
│       ├── (dataset name).mp4
│       ├── track_params.pt
│       ├── transforms_train.json
│       ├── transforms_val.json

Training

python train.py -s ${YOUR_DATASET_DIR}/${DATASET_NAME} --model_path ${YOUR_MODEL_DIR} --configs arguments/64_dim_1_transformer.py 

Rendering

Please adjust the batch size to match your GPU settings.

python render.py -s ${YOUR_DATASET_DIR}/${DATASET_NAME} --model_path ${YOUR_MODEL_DIR} --configs arguments/64_dim_1_transformer.py --iteration 10000 --batch 128

Inference with custom audio

Please locate the files <custom_aud>.wav and <custom_aud>.npy in the following directory path: ${YOUR_DATASET_DIR}/${DATASET_NAME}.

python render.py -s ${YOUR_DATASET_DIR}/${DATASET_NAME} --model_path ${YOUR_MODEL_DIR} --configs arguments/64_dim_1_transformer.py --iteration 10000 --batch 128 --custom_aud <custom_aud>.npy --custom_wav <custom_aud>.wav --skip_train --skip_test

Citation

If you find our work useful in your research, please cite our work as:

@misc{cho2024gaussiantalker,
      title={GaussianTalker: Real-Time High-Fidelity Talking Head Synthesis with Audio-Driven 3D Gaussian Splatting}, 
      author={Kyusun Cho and Joungbin Lee and Heeji Yoon and Yeobin Hong and Jaehoon Ko and Sangjun Ahn and Seungryong Kim},
      year={2024},
      eprint={2404.16012},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}