GaussianTalker: Real-Time High-Fidelity Talking Head Synthesis with Audio-Driven 3D Gaussian Splatting
This is our official implementation of the paper
"GaussianTalker: Real-Time High-Fidelity Talking Head Synthesis with Audio-Driven 3D Gaussian Splatting"
by Kyusun Cho*, Joungbin Lee*, Heeji Yoon*, Yeobin Hong, Jaehoon Ko, Sangjun Ahn, Seungryong Kim†
For more information, please check out our Paper and our Project page.
We implemented & tested GaussianTalker with NVIDIA RTX 3090 and A6000 GPU.
Run the below codes for the environment setting. ( details are in requirements.txt )
git clone https://github.com/joungbinlee/GaussianTalker.git
cd GaussianTalker
git submodule update --init --recursive
conda create -n GaussianTalker python=3.7
conda activate GaussianTalker
pip install -r requirements.txt
pip install -e submodules/custom-bg-depth-diff-gaussian-rasterization
pip install -e submodules/simple-knn
pip install "git+https://github.com/facebookresearch/pytorch3d.git"
pip install tensorflow-gpu==2.8.0
pip install --upgrade "protobuf<=3.20.1"
We used talking portrait videos from AD-NeRF, GeneFace and HDTF dataset. These are static videos whose average length are about 3~5 minutes.
You can see an example video with the below line:
wget https://github.com/YudongGuo/AD-NeRF/blob/master/dataset/vids/Obama.mp4?raw=true -O data/obama/obama.mp4
We also used SynObama for cross-driven setting inference.
- prepare face-parsing model.
wget https://github.com/YudongGuo/AD-NeRF/blob/master/data_util/face_parsing/79999_iter.pth?raw=true -O data_utils/face_parsing/79999_iter.pth
- Download 3DMM model from Basel Face Model 2009
Put "01_MorphableModel.mat" to data_utils/face_tracking/3DMM/
cd data_utils/face_tracking
python convert_BFM.py
cd ../../
python data_utils/process.py ${YOUR_DATASET_DIR}/${DATASET_NAME}/${DATASET_NAME}.mp4
- Obtain AU45 for eyes blinking
Run FeatureExtraction
in OpenFace, rename and move the output CSV file to (your dataset dir)/(dataset name)/au.csv
.
├── (your dataset dir)
│ | (dataset name)
│ ├── gt_imgs
│ ├── 0.jpg
│ ├── 1.jgp
│ ├── 2.jgp
│ ├── ...
│ ├── ori_imgs
│ ├── 0.jpg
│ ├── 0.lms
│ ├── 1.jgp
│ ├── 1.lms
│ ├── ...
│ ├── parsing
│ ├── 0.png
│ ├── 1.png
│ ├── 2.png
│ ├── 3.png
│ ├── ...
│ ├── torso_imgs
│ ├── 0.png
│ ├── 1.png
│ ├── 2.png
│ ├── 3.png
│ ├── ...
│ ├── au.csv
│ ├── aud_ds.npy
│ ├── aud_novel.wav
│ ├── aud_train.wav
│ ├── aud.wav
│ ├── bc.jpg
│ ├── (dataset name).mp4
│ ├── track_params.pt
│ ├── transforms_train.json
│ ├── transforms_val.json
python train.py -s ${YOUR_DATASET_DIR}/${DATASET_NAME} --model_path ${YOUR_MODEL_DIR} --configs arguments/64_dim_1_transformer.py
Please adjust the batch size to match your GPU settings.
python render.py -s ${YOUR_DATASET_DIR}/${DATASET_NAME} --model_path ${YOUR_MODEL_DIR} --configs arguments/64_dim_1_transformer.py --iteration 10000 --batch 128
Please locate the files <custom_aud>.wav and <custom_aud>.npy in the following directory path: ${YOUR_DATASET_DIR}/${DATASET_NAME}.
python render.py -s ${YOUR_DATASET_DIR}/${DATASET_NAME} --model_path ${YOUR_MODEL_DIR} --configs arguments/64_dim_1_transformer.py --iteration 10000 --batch 128 --custom_aud <custom_aud>.npy --custom_wav <custom_aud>.wav --skip_train --skip_test
If you find our work useful in your research, please cite our work as:
@misc{cho2024gaussiantalker,
title={GaussianTalker: Real-Time High-Fidelity Talking Head Synthesis with Audio-Driven 3D Gaussian Splatting},
author={Kyusun Cho and Joungbin Lee and Heeji Yoon and Yeobin Hong and Jaehoon Ko and Sangjun Ahn and Seungryong Kim},
year={2024},
eprint={2404.16012},
archivePrefix={arXiv},
primaryClass={cs.CV}
}