A pytorch implementation of instant-ngp, as described in Instant Neural Graphics Primitives with a Multiresolution Hash Encoding.
News: With the CUDA ray marching option for NeRF, we can:
- converge to a reasonable result in ~1min (50 epochs).
- render a 1920x1080 image in ~1s.
For the LEGO dataset, we can reach ~20FPS at 800x800 due to efficient voxel pruning.
(Tested with a TITAN RTX. The speed is still 2-5x slower compared to the original implementation.)
A GUI for training/visualizing NeRF is also available!
gui.mp4
As the official pytorch extension tinycudann has been released, the following implementations can be used as modular alternatives.
The performance and speed of these modules are guaranteed to be on-par, and we support using tinycudann as the backbone by the --tcnn
flag.
Later development will be focused on reproducing the NeRF inference speed.
- Fully-fused MLP
- basic pytorch binding of the original implementation
- HashGrid Encoder
- basic pytorch CUDA extension
- fp16 support
- Experiments
- SDF
- baseline
- better SDF calculation (especially for non-watertight meshes)
- NeRF
- baseline
- ray marching in CUDA.
- SDF
- NeRF GUI
- supports training.
- Misc.
- improve rendering quality of cuda raymarching!
- improve speed (e.g., avoid the
cat
in NeRF forward) - support visualize/supervise normals (add rendering mode option).
- support blender dataset format.
git clone --recursive https://github.com/ashawkey/torch-ngp.git
cd torch-ngp
pip install -r requirements.txt
# (optional) install the tcnn backbone
pip install git+https://github.com/NVlabs/tiny-cuda-nn/#subdirectory=bindings/torch
Tested on Ubuntu with torch 1.10 & CUDA 11.3 on TITAN RTX.
Currently, --ff
only supports GPUs with CUDA architecture >= 70
.
For GPUs with lower architecture, --tcnn
can still be used, but the speed will be slower compared to more recent GPUs.
We use the same data format as instant-ngp, e.g., armadillo and fox.
Please download and put them under ./data
.
First time running will take some time to compile the CUDA extensions.
### HashNeRF
# train with different backbones (with slower pytorch ray marching)
# for the colmap dataset, the default dataset setting `--mode colmap --bound 2 --scale 0.33` is used.
python main_nerf.py data/fox --workspace trial_nerf # fp32 mode
python main_nerf.py data/fox --workspace trial_nerf --fp16 # fp16 mode (pytorch amp)
python main_nerf.py data/fox --workspace trial_nerf --fp16 --ff # fp16 mode + FFMLP (this repo's implementation)
python main_nerf.py data/fox --workspace trial_nerf --fp16 --tcnn # fp16 mode + official tinycudann's encoder & MLP
# test mode
python main_nerf.py data/fox --workspace trial_nerf --fp16 --ff --test
# use CUDA to accelerate ray marching (much more faster!)
python main_nerf.py data/fox --workspace trial_nerf --fp16 --ff --cuda_ray # fp16 mode + FFMLP + cuda raymarching
# start a GUI for NeRF training & visualization
# always use with `--fp16 --ff/tcnn --cuda_ray` for an acceptable framerate!
python main_nerf.py data/fox --workspace trial_nerf --fp16 --ff --cuda_ray --gui
# test mode for GUI
python main_nerf.py data/fox --workspace trial_nerf --fp16 --ff --cuda_ray --gui --test
# for the blender dataset, you should add `--mode blender --bound 1.5 --scale 1.0`
# --mode specifies dataset type ('blender' or 'colmap')
# --bound means the scene is assumed to be inside box[-bound, bound]
# --scale adjusts the camera locaction to make sure it falls inside the above bounding box.
python main_nerf.py data/nerf_synthetic/lego --workspace trial_nerf --fp16 --ff --cuda_ray --mode blender --bound 1.5 --scale 1.0
python main_nerf.py data/nerf_synthetic/lego --workspace trial_nerf --fp16 --ff --cuda_ray --mode blender --bound 1.5 --scale 1.0 --gui
### SDF
python main_sdf.py data/armadillo.obj --workspace trial_sdf
python main_sdf.py data/armadillo.obj --workspace trial_sdf --fp16
python main_sdf.py data/armadillo.obj --workspace trial_sdf --fp16 --ff
python main_sdf.py data/armadillo.obj --workspace trial_sdf --fp16 --tcnn
python main_sdf.py data/armadillo.obj --workspace trial_sdf --fp16 --ff --test
### TensoRF
# almost the same as HashNeRF, just replace the main script.
python main_tensoRF.py data/fox --workspace trial_tensoRF --fp16 --ff --cuda_ray
python main_tensoRF.py data/nerf_synthetic/lego --workspace trial_tensoRF --fp16 --ff --cuda_ray --mode blender --bound 1.5 --scale 1.0
check the scripts
directory for more provided examples.
Tested with the default settings on the Lego test dataset. Here the speed refers to the iterations per second
on a TITAN RTX.
Model | PSNR | Train Speed | Test Speed |
---|---|---|---|
HashNeRF (fp16 ) |
32.22 | 24 | 0.56 |
HashNeRF (fp16 + ff ) |
32.81 | 24 | 0.79 |
HashNeRF (fp16 + tcnn ) |
32.72 | 20 | 0.37 |
HashNeRF (fp16 + cuda_ray ) |
32.54 | 65 | 6.4 |
HashNeRF (fp16 + cuda_ray + ff ) |
33.24 | 72 | 6.9 |
HashNeRF (fp16 + cuda_ray + tcnn ) |
33.11 | 60 | 5.8 |
TensoRF (fp16 ) |
33.79 | 18 | 0.53 |
TensoRF (fp16 + cuda_ray ) |
34.05 | 13 | 0.43 |
- Instead of assuming the scene is bounded in the unit box
[0, 1]
and centered at(0.5, 0.5, 0.5)
, this repo assumes the scene is bounded in box[-bound, bound]
, and centered at(0, 0, 0)
. Therefore, the functionality ofaabb_scale
is replaced bybound
here. - For the hashgrid encoder, this repo only implement the linear interpolation mode.
- For the voxel pruning in ray marching kernels, this repo doesn't implement the multi-scale density grid (check the
mip
keyword), and only use one128x128x128
grid for simplicity. Instead of updating the grid every 16 steps, we update it every epoch, which may lead to slower first few epochs if using--cuda_ray
. - For the blender dataest, the default mode in instant-ngp is to load all data (train/val/test) for training. Instead, we only use the specified split to train in CMD mode for easy evaluation. However, for GUI mode, we follow instant-ngp and use all data to train (check
type='all'
forNeRFDataset
).
- 3.27: major update. basically improve performance, and support tensoRF model.
- 3.22: reverted from pre-generating rays as it takes too much CPU memory, still the PSNR for Lego can reach ~33 now.
- 3.14: fixed the precision related issue for
fp16
mode, and it renders much better quality. Added PSNR metric for NeRF.- known issue: PSNR is worse, for Lego test dataset is only ~30.
- 3.14: linearly scale
desired_resolution
withbound
according to ashawkey#23.- known issue: very large bound (e.g., 16) leads to bad performance. Better to scale down the camera to fit into a smaller bounding box.
- 3.11: raymarching now supports supervising weights_sum (pixel alpha, or mask) directly, and bg_color is separated from CUDA to make it more flexible. Add an option to preload data into GPU.
- 3.9: add fov for gui.
- 3.1: add type='all' for blender dataset (load train + val + test data), which is the default behavior of instant-ngp.
- 2.28: density_grid now stores density on the voxel center (with randomness), instead of on the grid. This should improve the rendering quality, such as the black strips in the lego scene.
- 2.23: better support for the blender dataset.
- 2.22: add GUI for NeRF training.
- 2.21: add GUI for NeRF visualizing.
- known issue: noisy artefacts outside the camera covered region. It is related to
mark_untrained_density_grid
in instant-ngp.
- known issue: noisy artefacts outside the camera covered region. It is related to
- 2.20: cuda raymarching is finally stable now!
- 2.15: add the official tinycudann as an alternative backend.
- 2.10: add cuda_ray, can train/infer faster, but performance is worse currently.
- 2.6: add support for RGBA image.
- 1.30: fixed atomicAdd() to use __half2 in HashGrid Encoder's backward, now the training speed with fp16 is as expected!
- 1.29:
- finished an experimental binding of fully-fused MLP.
- replace SHEncoder with a CUDA implementation.
- 1.26: add fp16 support for HashGrid Encoder (requires CUDA >= 10 and GPU ARCH >= 70 for now...).
-
Credits to Thomas Müller for the amazing tiny-cuda-nn and instant-ngp:
@misc{tiny-cuda-nn, Author = {Thomas M\"uller}, Year = {2021}, Note = {https://github.com/nvlabs/tiny-cuda-nn}, Title = {Tiny {CUDA} Neural Network Framework} } @article{mueller2022instant, title = {Instant Neural Graphics Primitives with a Multiresolution Hash Encoding}, author = {Thomas M\"uller and Alex Evans and Christoph Schied and Alexander Keller}, journal = {arXiv:2201.05989}, year = {2022}, month = jan }
-
The framework of NeRF is adapted from nerf_pl:
@misc{queianchen_nerf, author = {Quei-An, Chen}, title = {Nerf_pl: a pytorch-lightning implementation of NeRF}, url = {https://github.com/kwea123/nerf_pl/}, year = {2020}, }
-
The official TensoRF implementation:
@misc{TensoRF, title={TensoRF: Tensorial Radiance Fields}, author={Anpei Chen and Zexiang Xu and Andreas Geiger and and Jingyi Yu and Hao Su}, year={2022}, eprint={2203.09517}, archivePrefix={arXiv}, primaryClass={cs.CV} }
-
The NeRF GUI is developed with DearPyGui.