/ProLab

Official Pytorch Implementation of Paper "A Semantic Space is Worth 256 Language Descriptions: Make Stronger Segmentation Models with Descriptive Properties"

Primary LanguagePythonApache License 2.0Apache-2.0

(ECCV 2024) ProLab: Property-level Label Space

Junfei Xiao1, Ziqi Zhou2, Wenxuan Li1, Shiyi Lan3, Jieru Mei1, Zhiding Yu3,
Bingchen Zhao4, Alan Yuille1, Yuyin Zhou2, Cihang Xie2

1Johns Hopkins University, 2UCSC, 3NVIDIA, 4University of Edinburgh

Teaser Image

Paper | Property-level Label Space | Model Zoo | Training & Evaluation

News

  • [07/07/24] 🔥 ProLab: Property-level Label Space is accepted to ECCV 2024. A camera-ready version is coming in the next 1~2 weeks paper. Stay tuned.
  • [12/21/23] 🔥 ProLab: Property-level Label Space is released. We propose to retrieve descriptive properties grounded in common sense knowledge to build a property-level label space which makes strong interpretable segmentation models. Please checkout the paper.

Method

method

Emerged Generalization Ability

ProLab models have emerged generalization ability to out-of-domain categories and even unknown categories.

Contents

Getting Started

Our segmentation code is developed on top of MMSegmentation and ViT-Adapter.

Setup

We have two tested environments based on torch 1.9+cuda 11.1+MMSegmentation v0.20.2 and torch 1.13.1+torch11.7+MMSegmentation v0.27.0.

Environment 1 (torch 1.9+cuda 11.1+MMSegmentation v0.20.2)

conda create -n prolab python=3.8
conda activate prolab
pip install torch==1.9.0+cu111 torchvision==0.10.0+cu111 torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html
pip install mmcv-full==1.4.2 -f https://download.openmmlab.com/mmcv/dist/cu111/torch1.9.0/index.html
pip install timm==0.4.12
pip install mmdet==2.22.0 # for Mask2Former
pip install mmsegmentation==0.20.2
pip install -r requirements.txt
cd ops & sh make.sh # compile deformable attention

Environment 2 (torch 1.13.1+cuda 11.7+MMSegmentation v0.27.0)

pip install torch==1.13.1+cu117 torchvision==0.14.1+cu117 torchaudio==0.13.1 --extra-index-url https://download.pytorch.org/whl/cu117
pip install mmcv-full==1.7.0 -f https://download.openmmlab.com/mmcv/dist/cu117/torch1.13.0/index.html
pip install timm==0.4.12
pip install mmdet==2.22.0 # may need modification on the limitation of mmcv version 
pip install mmsegmentation==0.27.0
pip install -r requirements.txt
cd ops & sh make.sh # compile deformable attention

Data Preparation

ADE20K/Cityscapes/COCO Stuff/Pascal Context

Please follow the guidelines in MMSegmentation to download ADE20K, Cityscapes, COCO Stuff and Pascal Context.

BDD

Please visit the official website to download the BDD dataset.

Property-level Label Space

Descriptive Properties and Clustered Embeddings (Ready-to-use)

We provide the retrieved descriptive properties (with GPT-3.5) and property-level labels (language embeddings) .

Descriptive Properties Retrieval (Optional)

We provide generate_descrtiptions.ipynb using GPT 3.5 (API) and LLAMA-2 (local deploy) to retrieve descriptive properties.

Encode Descriptions into Embeddings (Optional)

We also provide generate_embeddings.ipynb to encode and cluster the descriptive properties into embeddings with Sentence Transformer (huggingface, paper) and BAAI-BGE models (huggingface, paper) step-by-step.

Model Zoo

ADE20K

Framework Backbone Pretrain Lr schd Crop Size mIoU Config Checkpoint
UperNet ViT-Adapter-B DeiT-B 320k 512 49.0 config Google Drive
UperNet ViT-Adapter-L BEiT-L 160k 640 58.2 config Google Drive
UperNet ViT-Adapter-L BEiTv2-L 80K 896 58.7 config Google Drive

COCO-Stuff-164K

Framework Backbone Pretrain Lr schd Crop Size mIoU Config Checkpoint
UperNet ViT-Adapter-B DeiT-B 160K 512 45.4 config Google Drive

Pascal Context

Framework Backbone Pretrain Lr schd Crop Size mIoU Config Checkpoint
UperNet ViT-Adapter-B DeiT-B 160K 512 58.2 config Google Drive

Cityscapes

Framework Backbone Pretrain Lr schd Crop Size mIoU Config Checkpoint
UperNet ViT-Adapter-B DeiT-B 160K 768 81.4 config Google Drive

BDD

Framework Backbone Pretrain Lr schd Crop Size mIoU Config Checkpoint
UperNet ViT-Adapter-B DeiT-B 160K 768 65.7 config Google Drive

Training & Evaluation

Training

The following example script is to train ViT-Adapter-B + UperNet on ADE20k on a single node with 8 gpus:

sh dist_train.sh configs/ADE20K/upernet_deit_adapter_base_512_320k_ade20k_bge_base.py 8

Evaluation

The following example script is to evaluate ViT-Adapter-B + UperNet on COCO_Stuff val on a single node with 8 gpus:

sh dist_test.sh configs/COCO_Stuff/upernet_deit_adapter_base_512_160k_coco_stuff_bge_base.py 8 --eval mIoU

Citation

If this paper is useful to your work, please cite:

@article{xiao2023semantic,
  author    = {Xiao, Junfei and Zhou, Ziqi and Li, Wenxuan and Lan, Shiyi and Mei, Jieru and Yu, Zhiding and Yuille, Alan and Zhou, Yuyin and Xie, Cihang},
  title     = {A Semantic Space is Worth 256 Language Descriptions: Make Stronger Segmentation Models with Descriptive Properties},
  journal   = {arXiv preprint arXiv:2312.13764},
  year      = {2023},
}

Acknowledgement

GPT-3.5 and Llama-2 are used for retrieving descriptive properties.

Sentence Transformer and BAAI-BGE are used as description embedding models.

MMSegmentation and ViT-Adapter are used as the segmentation codebase.

Many thanks to all these great projects .