This is an official pytorch implementation of Simple Baselines for Pose Estimation and Pose Tracking. This work provides baseline methods that are surprisingly simple and effective, thus helpful for inspiring and evaluating new ideas for the field. State-of-the-art results are achieved on challenging benchmarks. On COCO keypoints valid dataset, our best single model achieves 74.3 of mAP. You can reproduce our results using this repo. All models are provided for research purpose.
Arch | Head | Shoulder | Elbow | Wrist | Hip | Knee | Ankle | Mean | Mean@0.1 |
---|---|---|---|---|---|---|---|---|---|
256x256_pose_resnet_50_d256d256d256 | 96.351 | 95.329 | 88.989 | 83.176 | 88.420 | 83.960 | 79.594 | 88.532 | 33.911 |
384x384_pose_resnet_50_d256d256d256 | 96.658 | 95.754 | 89.790 | 84.614 | 88.523 | 84.666 | 79.287 | 89.066 | 38.046 |
256x256_pose_resnet_101_d256d256d256 | 96.862 | 95.873 | 89.518 | 84.376 | 88.437 | 84.486 | 80.703 | 89.131 | 34.020 |
384x384_pose_resnet_101_d256d256d256 | 96.965 | 95.907 | 90.268 | 85.780 | 89.597 | 85.935 | 82.098 | 90.003 | 38.860 |
256x256_pose_resnet_152_d256d256d256 | 97.033 | 95.941 | 90.046 | 84.976 | 89.164 | 85.311 | 81.271 | 89.620 | 35.025 |
384x384_pose_resnet_152_d256d256d256 | 96.794 | 95.618 | 90.080 | 86.225 | 89.700 | 86.862 | 82.853 | 90.200 | 39.433 |
- Flip test is used
Arch | AP | Ap .5 | AP .75 | AP (M) | AP (L) | AR | AR .5 | AR .75 | AR (M) | AR (L) |
---|---|---|---|---|---|---|---|---|---|---|
256x192_pose_resnet_50_d256d256d256 | 0.704 | 0.886 | 0.783 | 0.671 | 0.772 | 0.763 | 0.929 | 0.834 | 0.721 | 0.824 |
384x288_pose_resnet_50_d256d256d256 | 0.722 | 0.893 | 0.789 | 0.681 | 0.797 | 0.776 | 0.932 | 0.838 | 0.728 | 0.846 |
256x192_pose_resnet_101_d256d256d256 | 0.714 | 0.893 | 0.793 | 0.681 | 0.781 | 0.771 | 0.934 | 0.840 | 0.730 | 0.832 |
384x288_pose_resnet_101_d256d256d256 | 0.736 | 0.896 | 0.803 | 0.699 | 0.811 | 0.791 | 0.936 | 0.851 | 0.745 | 0.858 |
256x192_pose_resnet_152_d256d256d256 | 0.720 | 0.893 | 0.798 | 0.687 | 0.789 | 0.778 | 0.934 | 0.846 | 0.736 | 0.839 |
384x288_pose_resnet_152_d256d256d256 | 0.743 | 0.896 | 0.811 | 0.705 | 0.816 | 0.797 | 0.937 | 0.858 | 0.751 | 0.863 |
- Flip test is used
- Person detector has person AP of 56.4 on COCO val2017 dataset
The code is developed using python3.6 on Ubutnu16.04. NVIDIA GPUs ared needed. The code is developed and tested using 4 NVIDIA P100 GPUS cards. Other platform or GPU card are not fully tested.
-
Install pytorch >= v0.4.0 following official instruction
-
Disable cudnn for batch_norm
# PYTORCH=/path/to/pytorch # for pytorch v0.4.0 sed -i "1194s/torch\.backends\.cudnn\.enabled/False/g" ${PYTORCH}/torch/nn/functional.py # for pytorch v0.4.1 sed -i "1254s/torch\.backends\.cudnn\.enabled/False/g" ${PYTORCH}/torch/nn/functional.py
Note that instructions like # PYTORCH=/path/to/pytorch indicate that you should pick a path where you'd like to have pytorch installed and then set an environment variable (PYTORCH in this case) accordingly.
-
Clone this repo, and we'll call the directory that you cloned as ${POSE_ROOT}
-
Install dependencies.
pip install -r requirements.txt
-
Install COCOAPI:
# COCOAPI=/path/to/clone/cocoapi git clone https://github.com/cocodataset/cocoapi.git $COCOAPI cd $COCOAPI/PythonAPI # Install into global site-packages make install # Alternatively, if you do not have permissions or prefer # not to install the COCO API into global site-packages python3 setup.py install --user
Note that instructions like # COCOAPI=/path/to/install/cocoapi indicate that you should pick a path where you'd like to have the software cloned and then set an environment variable (COCOAPI in this case) accordingly.
-
Download pytorch imagenet pretrained models from pytorch model zoo.
-
Download mpii and coco pretrained model from OneDrive. Please download them under ${POSE_ROOT}/models/pytorch, and make them look like this:
${POSE_ROOT} `-- models `-- pytorch |-- imagenet | |-- resnet50-19c8e357.pth | |-- resnet101-5d3b4d8f.pth | `-- resnet152-b121ed2d.pth |-- pose_coco | |-- pose_resnet_101_256x192.pth.tar | |-- pose_resnet_101_384x288.pth.tar | |-- pose_resnet_152_256x192.pth.tar | |-- pose_resnet_152_384x288.pth.tar | |-- pose_resnet_50_256x192.pth.tar | `-- pose_resnet_50_384x288.pth.tar `-- pose_mpii |-- pose_resnet_101_256x256.pth.tar |-- pose_resnet_101_384x384.pth.tar |-- pose_resnet_152_256x256.pth.tar |-- pose_resnet_152_384x384.pth.tar |-- pose_resnet_50_256x256.pth.tar `-- pose_resnet_50_384x384.pth.tar
-
Init output(training model output directory) and log(tensorboard log directory) directory.
mkdir ouput mkdir log
and your directory tree should like this
${POSE_ROOT} ├── data ├── experiments ├── lib ├── log ├── models ├── output ├── pose_estimation ├── README.md └── requirements.txt
For MPII data, please download from MPII Human Pose Dataset, the original annotation files are matlab's format. We have converted to json format, you also need download them from OneDrive. Extract them under {POSE_ROOT}/data, and make them look like this:
${POSE_ROOT}
|-- data
`-- |-- mpii
`-- |-- annot
| |-- gt_valid.mat
| |-- test.json
| |-- train.json
| |-- trainval.json
| `-- valid.json
`-- images
|-- 000001163.jpg
|-- 000003072.jpg
For COCO data, please download from COCO download, 2017 Train/Val is needed for COCO keypoints training and validation. We also provide person detection result of COCO val2017 for reproduce our multi-person pose estimation results. Please download from OneDrive. Download and extract them under {POSE_ROOT}/data, and make them look like this:
${POSE_ROOT}
|-- data
`-- |-- coco
`-- |-- annotations
| |-- person_keypoints_train2017.json
| `-- person_keypoints_val2017.json
|-- person_detection_results
| |-- COCO_val2017_detections_AP_H_56_person.json
`-- images
|-- train2017
| |-- 000000000009.jpg
| |-- 000000000025.jpg
| |-- 000000000030.jpg
| |-- ...
`-- val2017
|-- 000000000139.jpg
|-- 000000000285.jpg
|-- 000000000632.jpg
|-- ...
python pose_estimation/valid.py \
--cfg experiments/mpii/resnet50/256x256_d256x3_adam_lr1e-3.yaml \
--flip-test \
--model-file models/pytorch/pose_mpii/pose_resnet_50_256x256.pth.tar
python pose_estimation/train.py \
--cfg experiments/mpii/resnet50/256x256_d256x3_adam_lr1e-3.yaml
python pose_estimation/valid.py \
--cfg experiments/mpii/resnet50/256x256_d256x3_adam_lr1e-3.yaml \
--flip-test \
--model-file models/pytorch/pose_coco/pose_resnet_50_256x256.pth.tar
python pose_estimation/train.py \
--cfg experiments/mpii/resnet50/256x256_d256x3_adam_lr1e-3.yaml
If you use our code or models in your research, please cite with
@inproceedings{xiao2018simple,
author={Xiao, Bin and Wu, Haiping and Wei, Yichen},
title={Simple Baselines for Human Pose Estimation and Tracking},
booktitle = {European Conference on Computer Vision (ECCV)},
year = {2018}
}