See the K-tree project homepage for the latest news!
LMW-tree is a generic template library written in C++ that implements several algorithms that use the m-way nearest neighbor tree structre to store their data. See the related PhD thesis for more details on m-way nn trees. The algorithms and data structures are generic to support different data representations such as dense real valued and bit vectors, and sparse vectors. Additionally, it can index any object type that can form a prototype representation of a set of objects.
The algorithms are primarily focussed on comptutationally efficient clustering. Clustering is an unsupervised machine learning process that finds interesting patterns in data. It places similar items into clusters and dissimilar items into different clusters. The data structures and algorithms can also be used for nearest neighbor search, supervised learning and other machine learning applications.
The package includes EM-tree, K-tree, k-means, TSVQ, repeated k-means, clustering, random projections, random indexing, hashing, bit signatures. See the related PhD thesis for more details these algorithms and representations.
LMW-tree is licensed under the BSD license.
See the ClueWeb09 clusters and the ClueWeb12 clusters for examples of clusters produced by the EM-tree algorithm. The ClueWeb09 dataset contains 500 million web pages and was clustered into 700,000 clusters. The ClueWeb12 datasets contains 733 million web pages and was clustered into 600,000 clusters. The document to cluster mappings and other related files area available at SourceForge.
The following people have contributed to the project (sorted lexicographically by last name)
- Lance De Vine
- Chris de Vries