/data-science-template

Template para um projeto de ciencia de dados

Primary LanguagePython

View on Medium

Data Science Cookie Cutter

Note: This template uses poetry. If you prefer using pip, go to the pip branch instead.

What is this?

This repository is a template for a data science project. This is the project structure I frequently use for my data science project.

Tools used in this project

Project Structure

.
├── config                      
│   ├── main.yaml                   # Main configuration file
│   ├── model                       # Configurations for training model
│   │   ├── model1.yaml             # First variation of parameters to train model
│   │   └── model2.yaml             # Second variation of parameters to train model
│   └── process                     # Configurations for processing data
│       ├── process1.yaml           # First variation of parameters to process data
│       └── process2.yaml           # Second variation of parameters to process data
├── data            
│   ├── final                       # data after training the model
│   ├── processed                   # data after processing
│   ├── raw                         # raw data
│   └── raw.dvc                     # DVC file of data/raw
├── docs                            # documentation for your project
├── dvc.yaml                        # DVC pipeline
├── .flake8                         # configuration for flake8 - a Python formatter tool
├── .gitignore                      # ignore files that cannot commit to Git
├── Makefile                        # store useful commands to set up the environment
├── models                          # store models
├── notebooks                       # store notebooks
├── .pre-commit-config.yaml         # configurations for pre-commit
├── pyproject.toml                  # dependencies for poetry
├── README.md                       # describe your project
├── src                             # store source code
│   ├── __init__.py                 # make src a Python module 
│   ├── process.py                  # process data before training model
│   └── train_model.py              # train model
└── tests                           # store tests
    ├── __init__.py                 # make tests a Python module 
    ├── test_process.py             # test functions for process.py
    └── test_train_model.py         # test functions for train_model.py

How to use this project

Install Cookiecutter:

pip install cookiecutter

Create a project based on the template:

cookiecutter https://github.com/khuyentran1401/data-science-template

Find detailed explanation of this template here.