An implementation of music separation model by Luo et.al.
-
Prepare .wav files to separate.
-
Install library
pip install git+https://github.com/leichtrhino/ChimeraNet
-
Download pretrained model.
-
Download sample script.
-
Run script
python chimeranet-separate.py -i ${input_dir}/*.wav \
-m model.hdf5 \
--replace-top-directory ${output_dir}
Output in nutshell
- the format of filename is
${input_file}_{embd,mask}_ch[12].wav
. embd
andmask
indicates that it was inferred from deep clustering and mask respectively.ch1
andch2
are voice and music channel respectively.
See Example section on ChimeraNet documentation.
- keras
- one of keras' backends (i.e. TensorFlow, CNTK, Theano)
- sklearn
- librosa
- soundfile
- Run
pip install git+https://github.com/leichtrhino/ChimeraNet
or any python package installer. (Currently,ChimeraNet
is not in PyPI.) - Install keras' backend if the environment does not have any.
Install
tensorflow
if unsure.