/kapre

kapre: Keras Audio Preprocessors

Primary LanguagePythonMIT LicenseMIT

kapre

Keras Audio Preprocessors. Written by Keunwoo Choi.

Why bother to save STFT/melspectrograms to your storage? Just do it on-the-fly on-GPU.

How demanding is the computation? Check out this paper!

Contents

News

  • 20 Feb 2019

    • Kapre ver 0.1.4
      • Fixed amplitude-to-decibel error as raised in #46
  • March 2018

    • Kapre ver 0.1.3
      • Kapre is on Pip again
      • Add unit tests
      • Remove Datasets
      • Remove some codes while adding more dependency on Librosa to make it cleaner and more stable
        • and therefore htk option enabled in Melspectrogram
  • 9 July 2017

    • Kapre ver 0.1.1, aka 'pretty stable' with a benchmark paper
      • Remove STFT, python3 compatible
      • A full documentation in this readme.md
      • pip version is updated

Installation

(↑up to contents)

  1. For keras >= 2.0
pip install kapre

Or,

git clone https://github.com/keunwoochoi/kapre.git
cd kapre
python setup.py install
  1. For Keras 1.x (note: it is not updated anymore;)
git clone https://github.com/keunwoochoi/kapre.git
cd kapre
git checkout a2bde3e
python setup.py install

Usage

Layers

(↑up to contents)

Audio preprocessing layers

One-shot example

(↑up to contents)

Using Mel-spectrogram

from keras.models import Sequential
from kapre.time_frequency import Melspectrogram
from kapre.utils import Normalization2D
from kapre.augmentation import AdditiveNoise

# 6 channels (!), maybe 1-sec audio signal, for an example.
input_shape = (6, 44100)
sr = 44100
model = Sequential()
# A mel-spectrogram layer
model.add(Melspectrogram(n_dft=512, n_hop=256, input_shape=input_shape,
                         padding='same', sr=sr, n_mels=128,
                         fmin=0.0, fmax=sr/2, power_melgram=1.0,
                         return_decibel_melgram=False, trainable_fb=False,
                         trainable_kernel=False,
                         name='trainable_stft'))
# Maybe some additive white noise.
model.add(AdditiveNoise(power=0.2))
# If you wanna normalise it per-frequency
model.add(Normalization2D(str_axis='freq')) # or 'channel', 'time', 'batch', 'data_sample'
# After this, it's just a usual keras workflow. For example..
# Add some layers, e.g., model.add(some convolution layers..)
# Compile the model
model.compile('adam', 'categorical_crossentropy') # if single-label classification
# train it with raw audio sample inputs
x = load_x() # e.g., x.shape = (10000, 6, 44100)
y = load_y() # e.g., y.shape = (10000, 10) if it's 10-class classification
# and train it
model.fit(x, y)
# Done!

To save/load models with kapre layers

Use custom_objects keyword argument as below.

import keras
import kapre

model = keras.models.Sequential()
model.add(kapre.time_frequency.Melspectrogram(512, input_shape=(1, 44100)))
model.summary()
model.save('temp_model.h5')
# Now saved, let's load it.
model2 = keras.models.load_model('temp_model.h5',
  custom_objects={'Melspectrogram':kapre.time_frequency.Melspectrogram})
model2.summary()

Citation

(↑up to contents)

Please cite this paper if you use Kapre for your work.

@inproceedings{choi2017kapre,
  title={Kapre: On-GPU Audio Preprocessing Layers for a Quick Implementation of Deep Neural Network Models with Keras},
  author={Choi, Keunwoo and Joo, Deokjin and Kim, Juho},
  booktitle={Machine Learning for Music Discovery Workshop at 34th International Conference on Machine Learning},
  year={2017},
  organization={ICML}
}

API Documentation

Spectrogram

(↑up to contents)

kapre.time_frequency.Spectrogram(n_dft=512, n_hop=None, padding='same',
                                 power_spectrogram=2.0, return_decibel_spectrogram=False,
                                 trainable_kernel=False, image_data_format='default',
                                 **kwargs)

Spectrogram layer that outputs spectrogram(s) in 2D image format.

Parameters

 * n_dft: int > 0 [scalar]
   - The number of DFT points, presumably power of 2.
   - Default: `512`
 * n_hop: int > 0 [scalar]
   - Hop length between frames in sample,  probably <= `n_dft`.
   - Default: `None` (`n_dft / 2` is used)
 * padding: str, `'same'` or `'valid'`.
   - Padding strategies at the ends of signal.
   - Default: `'same'`
 * power_spectrogram: float [scalar],
   - `2.0` to get power-spectrogram, `1.0` to get amplitude-spectrogram.
   - Usually `1.0` or `2.0`.
   - Default: `2.0`
 * return_decibel_spectrogram: bool,
    - Whether to return in decibel or not, i.e. returns log10(amplitude spectrogram) if `True`.
    - Recommended to use `True`, although it's not by default.
    - Default: `False`
 * trainable_kernel: bool
   -  Whether the kernels are trainable or not.
   -  If `True`, Kernels are initialised with DFT kernels and then trained.
   -  Default: `False`
* image_data_format: string, `'channels_first'` or `'channels_last'`.
   -  The returned spectrogram follows this image_data_format strategy.
   -  If `'default'`, it follows the current Keras session's setting.
   -  Setting is in `./keras/keras.json`.
   -  Default: `'default'`

Notes

 * The input should be a 2D array, `(audio_channel, audio_length)`.
 * E.g., `(1, 44100)` for mono signal, `(2, 44100)` for stereo signal.
 * It supports multichannel signal input, so `audio_channel` can be any positive integer.

Returns

A Keras layer.

 * abs(Spectrogram) in a shape of 2D data, i.e.,
 * `(None, n_channel, n_freq, n_time)` if `'channels_first'`,
 * `(None, n_freq, n_time, n_channel)` if `'channels_last'`,

Melspectrogram

(↑up to contents)

kapre.time_frequency.Melspectrogram(sr=22050, n_mels=128, fmin=0.0, fmax=None,
                                    power_melgram=1.0, return_decibel_melgram=False,
                                    trainable_fb=False, **kwargs)

Mel-spectrogram layer that outputs mel-spectrogram(s) in 2D image format.

Its base class is Spectrogram.

Mel-spectrogram is an efficient representation using the property of human auditory system -- by compressing frequency axis into mel-scale axis.

Parameters

 * sr: integer > 0 [scalar]
   - sampling rate of the input audio signal.
   - Default: `22050`
 * n_mels: int > 0 [scalar]
   - The number of mel bands.
   - Default: `128`
 * fmin: float > 0 [scalar]
   - Minimum frequency to include in Mel-spectrogram.
   - Default: `0.0`
 * fmax: float > `fmin` [scalar]
   - Maximum frequency to include in Mel-spectrogram.
   - If `None`, it is inferred as `sr / 2`.
   - Default: `None`
 * power_melgram: float [scalar]
   - Power of `2.0` if power-spectrogram,
   - `1.0` if amplitude spectrogram.
   - Default: `1.0`
 * return_decibel_melgram: bool
   - Whether to return in decibel or not, i.e. returns log10(amplitude spectrogram) if `True`.
   - Recommended to use `True`, although it's not by default.
   - Default: `False`
 * trainable_fb: bool
   - Whether the spectrogram -> mel-spectrogram filterbanks are trainable.
   - If `True`, the frequency-to-mel matrix is initialised with mel frequencies but trainable.
   - If `False`, it is initialised and then frozen.
   - Default: `False`
 * **kwargs:
   - The keyword arguments of `Spectrogram` such as `n_dft`, `n_hop`,
   - `padding`, `trainable_kernel`, `image_data_format`.

Notes

 * The input should be a 2D array, `(audio_channel, audio_length)`.
E.g., `(1, 44100)` for mono signal, `(2, 44100)` for stereo signal.
 * It supports multichannel signal input, so `audio_channel` can be any positive integer.

Returns

A Keras layer

 * abs(mel-spectrogram) in a shape of 2D data, i.e.,
 * `(None, n_channel, n_mels, n_time)` if `'channels_first'`,
 * `(None, n_mels, n_time, n_channel)` if `'channels_last'`,

AmplitudeToDB

(↑up to contents)

kapre.utils.AmplitudeToDB(amin=1e-10, top_db=80.0, **kwargs)

A layer that converts amplitude to decibel

Parameters

* amin: float [scalar]
    - Noise floor. Default: 1e-10
* top_db: float [scalar]
    - Dynamic range of output. Default: 80.0

Example

Adding AmplitudeToDB after a spectrogram:

model.add(Spectrogram(return_decibel=False))
model.add(AmplitudeToDB())

, which is the same as:

model.add(Spectrogram(return_decibel=True))

Normalization2D

(↑up to contents)

kapre.utils.Normalization2D(str_axis=None, int_axis=None, image_data_format='default',
                            eps=1e-10, **kwargs)

A layer that normalises input data in axis axis.

Parameters

* input_shape: tuple of ints
    - E.g., `(None, n_ch, n_row, n_col)` if theano.
* str_axis: str
    - used ONLY IF `int_axis` is `None`.
    - `'batch'`, `'data_sample'`, `'channel'`, `'freq'`, `'time')`
    - Even though it is optional, actually it is recommended to use
    - `str_axis` over `int_axis` because it provides more meaningful
    - and image data format-robust interface.
* int_axis: int
    - axis index that along which mean/std is computed.
    - `0` for per data sample, `-1` for per batch.
    - `1`, `2`, `3` for channel, row, col (if channels_first)
    - if `int_axis is None`, `str_axis` SHOULD BE set.

Example

A frequency-axis normalization after a spectrogram:: python model.add(Spectrogram()) model.add(Normalization2D(str_axis='freq'))

Filterbank

(↑up to contents)

kapre.filterbank.Filterbank(n_fbs, trainable_fb, sr=None, init='mel', fmin=0., fmax=None,
                            bins_per_octave=12, image_data_format='default', **kwargs)

Notes

Input/output are 2D image format.
E.g., if channel_first,
    - input_shape: ``(None, n_ch, n_freqs, n_time)``
    - output_shape: ``(None, n_ch, n_mels, n_time)``

Parameters

* n_fbs: int
   - Number of filterbanks
* sr: int
    - sampling rate. It is used to initialize `freq_to_mel`.
* init: str
    - if `'mel'`, init with mel center frequencies and stds.
* fmin: float
    - min frequency of filterbanks.
    - If `init == 'log'`, fmin should be > 0. Use `None` if you got no idea.
* fmax: float
    - max frequency of filterbanks.
    - If `init == 'log'`, fmax is ignored.
* trainable_fb: bool,
    - Whether the filterbanks are trainable or not.

AdditiveNoise

(↑up to contents)

kapre.augmentation.AdditiveNoise(power=0.1, random_gain=False, noise_type='white', **kwargs)

Add noise to input data and output it.

Parameters

* power: float [scalar]
    - The power of noise. std if it's white noise.
    - Default: `0.1`
* random_gain: bool
    - Whether the noise gain is random or not.
    - If `True`, gain is sampled from `uniform(low=0.0, high=power)` in every batch.
    - Default: `False`
* noise_type; str,
    - Specify the type of noise. It only supports `'white'` now.
    - Default: `white`

Returns

Same shape as input data but with additional generated noise.