Oolong - compile-time query generation for document stores.
This library is insipred by Quill. Everything is implemented with Scala 3 macros. Scala 2 is not supported. At the moment MongoDB is the only supported document store.
If you want to contribute please see our guide for contributors.
All query generation is happening at compile-time. This means:
- Zero runtime overhead. You can enjoy the abstraction without worrying about performance.
- Debugging is straightforward because generated queries are displayed as compilation messages.
Write your queries as plain Scala lambdas and oolong will translate them into the target representation for your document store:
import org.mongodb.scala.bson.BsonDocument
import oolong.dsl.*
import oolong.mongo.*
case class Person(name: String, address: Address)
case class Address(city: String)
val q: BsonDocument = query[Person](p => p.name == "Joe" && p.address.city == "Amsterdam")
// The generated query will be displayed during compilation:
// {"$and": [{"name": {"$eq": "Joe"}}, {"address.city": {"$eq": "Amsterdam"}}]}
// ... Then you run the query by passing the generated BSON to mongo-scala-driver
Updates are also supported:
val q: BsonDocument = update[Person](_
.set(_.name, "Alice")
.inc(_.age, 5)
)
// q is {
// $set: { "name": "Alice" },
// $inc: { "age": 5 }
// }
I Comparison query operators
- $eq
import oolong.dsl.*
import oolong.mongo.*
case class Person(name: String, age: Int, email: Option[String])
val q = query[Person](_.name == "John")
// q is {"name": "John"}
In oolong $eq query is transformed into its implicit form: { field: <value> }
, except when a field is queried more than once.
- $gt
val q = query[Person](_.age > 18)
// q is {"age": {"$gt": 18}}
- $gte
val q = query[Person](_.age >= 18)
// q is {"age": {"$gte": 18}}
- $in
val q = query[Person](p => List(18, 19, 20).contains(p.age))
// q is {"age": {"$in": [18, 19, 20]}}
- $lt
val q = query[Person](_.age < 18)
// q is {"age": {"$lt": 18}}
- $lte
val q = query[Person](_.age <= 18)
// q is {"age": {"$lte": 18}}
- $ne
val q = query[Person](_.name != "John")
// q is {"name" : {"$ne": "John"}}
- $nin
val q = query[Person](p => !List(18, 19, 20).contains(p.age))
// q is {"age": {"$nin": [18, 19, 20]}}
- $type
val q = query[Person](_.age.isInstance[MongoType.INT32])
// q is {"age": { "$type": 16 }}
- $mod
val q = query[Person](_.age % 4.5 == 2)
// q is {"age": {"$mod": [4.5, 2]}}
Also $mod
is supported if %
is defined in extension:
trait NewType[T](using ev: Numeric[T]):
opaque type Type = T
given Numeric[Type] = ev
extension (nt: Type) def value: T = nt
object Number extends NewType[Int]:
extension (self: Number) def %(a: Int): Int = self.value % a
type Number = Number.Type
case class Human(age: Number)
val q = query[Human](_.age % 2 == 2)
// q is {"age": {"$mod": [2, 2]}}
II Logical query operators
- $and
val q = query[Person](p => p.name == "John" && p.age >= 18)
// q is {"name" : "John", "age": {"$gte": 18}}
If we query different fields the query is simplified as above.
//However, should we query the same field twice, we would observe the form with $and
val q = query[Person](p => p.age != 33 && p.age >= 18)
// q is {"$and": [{"age": {"$ne": 33}}, {"age": {"$gte": 18}]}
- $or
val q = query[Person](p => p.age != 33 || p.age >= 18)
// q is {"or": [{"age": {"$ne": 33}}, {"age": {"$gte": 18}]}
- $not
val q = query[Person](p => !(p.age < 18))
// q is { "age": { "$not": { "$lt": 18 } } }
III Element Query Operators
- $exists
val q = query[Person](_.email.isDefined)
// q is { "email": { "$exists": true } }
val q1 = query[Person](_.email.nonEmpty)
// q1 is { "email": { "$exists": true } }
val q2 = query[Person](_.email.isEmpty)
// q2 is { "email": { "$exists": false } }
IV Evaluation Query Operators
- $regex
There are 4 ways to make a $regex query, that are supported in oolong, which are:
import java.util.regex.Pattern
val q = query[Person](_.email.!!.matches("(?ix)^[\\w-\\.]+@([\\w-]+\\.)+[\\w-]{2,4}$"))
//q is {"email": {"$regex": "^[\w-\.]+@([\w-]+\.)+[\w-]{2,4}$", "$options": "ix"}
val q1 = query[Person](p => Pattern.compile("(?ix)^[\\w-\\.]+@([\\w-]+\\.)+[\\w-]{2,4}$").matcher(p.email.!!).matches())
//q1 is {"email": {"$regex": "^[\w-\.]+@([\w-]+\.)+[\w-]{2,4}$", "$options": "ix"}
val q2 = query[Person](p => Pattern.compile("^[\\w-\\.]+@([\\w-]+\\.)+[\\w-]{2,4}$", Pattern.CASE_INSENSITIVE | Pattern.COMMENTS).matcher(p.email.!!).matches())
//q2 is {"email": {"$regex": "^[\w-\.]+@([\w-]+\.)+[\w-]{2,4}$", "$options": "ix"}
val q3 = query[Person](p => Pattern.matches("^[\\w-\\.]+@([\\w-]+\\.)+[\\w-]{2,4}$", p.email.!!))
//q3 is {"email": {"$regex": "^[\w-\.]+@([\w-]+\.)+[\w-]{2,4}$"}
V Array Query Operators
- $size
import oolong.dsl.*
case class Course(studentNames: List[String])
val q = query[Course](_.studentNames.size == 20)
val q = query[Course](_.studentNames.length == 20)
// q is {"studentNames": {"$size": 20}}
- $elemMatch
import oolong.dsl.*
case class Student(name: String, age: Int)
case class Course(students: List[Student], tutor: String)
val q = query[Course](_.students.exists(_.age == 20)) // $elemMatch ommited when querying single field
// q is {"students.age": 20}
val q = query[Course](course => course.students.exists(st => st.age > 20 && st.name == "Pavel"))
// q is {"students": {"$elemMatch": {"age": {"$gt": 20}, "name": "Pavel"}}}
- $all
case class LotteryTicket(numbers: List[Int])
inline def winningNumbers = List(4, 8, 15, 16, 23, 42)
val q = query[LotteryTicket](lt => winningNumbers.forall(lt.numbers.contains))
// q is { "numbers": { "$all": [4, 8, 15, 16, 23, 42] } }
$all with $elemMatch
case class LotteryTicket(numbers: List[Int], series: Long)
case class LotteryTickets(tickets: Vector[LotteryTicket])
val q = query[LotteryTickets](lts =>
lts.tickets.exists(_.numbers.size == 20) && lts.tickets.exists(ticket =>
ticket.numbers.size == 10 && ticket.series == 99L
)
)
// q is { "tickets": { "$all": [{ "$elemMatch": { "numbers": { "$size": 20 } } }, { "$elemMatch": { "numbers": { "$size": 10 }, "series": 99 } }] } }
I Field Update Operators
- $inc
import oolong.dsl.*
import oolong.mongo.*
case class Observation(count: Int, result: Long, name: String, threshold: Option[Int])
val q = update[Observation](_.inc(_.count, 1))
// q is {"$set": {"count": 1}}
- $min
val q = update[Observation](_.min(_.result, 1))
// q is {"$min": {"result": 1}}
- $max
val q = update[Observation](_.max(_.result, 10))
// q is {"$min": {"result": 1}}
- $mul
val q = update[Observation](_.mul(_.result, 2))
// q is {"$mul": {"result": 2}}
- $rename
val q = update[Observation](_.rename(_.name, "tag"))
// q is {"$rename": {"name": "tag"}}
- $set
val q = update[Observation](_.set(_.count, 0))
// q is {"$set": {"count": 0}}
- $set
val q = update[Observation](_.set(_.count, 0))
// q is {"$set": {"count": 0}}
- $set
val q = update[Observation](_.setOnInsert(_.threshold, 100))
// q is {"$setOnInsert": {"threshold": 100}}
- $unset
$unset can be used only to set None on Option fields
val q = update[Observation](_.unset(_.threshold))
// q is {"$unset": {"threshold": ""}}
II Array update operators
- $addToSet
case class Student(id: Int, courses: List[Int])
val q = update[Student](_.addToSet(_.courses, 55))
// q is {"$addToSet": {"courses": 55}}
In order to append multiple values to array addToSetAll
should be used:
val q = update[Student](_.addToSetAll(_.courses, List(42, 44, 53)))
// q is {"$addToSet": {"courses": {$each: [42, 44, 53] }}}
- $pop
case class Student(id: Int, courses: List[Int])
val q = update[Student](_.popHead(_.courses)) // removes the first element
// q is {"$pop": {"courses": -1}}
val q1 = update[Student](_.popLast(_.courses)) // removes the last element
// q1 is {"$pop": {"courses": 1}}
- $pull
case class Student(id: Int, courses: List[Int])
val q = update[Student](_.pull(_.courses, _ >= 42))
// q is {"$pull": {"courses": {"$gte": 42}}}
- $pullAll
case class Student(id: Int, courses: List[Int])
val q = update[Student](_.pullAll(_.courses, List(5, 10, 42)))
// q is {"$pullAll": {"courses": [5, 10, 42]}}
case class Passport(number: String, issueDate: LocalDate)
case class BirthInfo(country: String, date: LocalDate)
case class Student(name: String, lastName: String, passport: Passport, birthInfo: BirthInfo)
case class StudentDTO(name: String, lastName: String)
case class PassportDTO(number: String, issueDate: LocalDate)
case class BirthDateDTO(country: String, date: LocalDate)
val proj = projection[Student, StudentDTO]
// proj is {"name": 1, "birthInfo.date": 1, "passport": 1, "lastName": 1}
In order to rename fields in codecs and queries for type T the instance of QueryMeta[T] should be provided in the scope:
import org.mongodb.scala.BsonDocument
import oolong.bson.BsonDecoder
import oolong.bson.BsonEncoder
import oolong.bson.given
import oolong.bson.meta.*
import oolong.bson.meta.QueryMeta
import oolong.dsl.*
import oolong.mongo.*
case class Person(name: String, address: Option[Address]) derives BsonEncoder, BsonDecoder
object Person:
inline given QueryMeta[Person] = queryMeta(_.name -> "lastName")
case class Address(city: String) derives BsonEncoder, BsonDecoder
val person = Person("Adams", Some(Address("New York")))
val bson: BsonDocument = person.bson.asDocument()
val json = bson.toJson
// json is {"lastName": "Adams", "address": {"city": "New York"}}
//also having QueryMeta[Person] affects filter and update queries:
val q0: BsonDocument = query[Person](_.name == "Johnson")
// The generated query will be:
// {"lastName": "Johnson"}
val q1: BsonDocument = update[Person](_
.set(_.name, "Brook")
)
// q1 is {
// $set: { "lastName": "Brook" },
// }
All QueryMeta instances should be inline given instances to be used in macro.
If they are not given their presence will not have any effect on codecs and queries.
And if they are not inline the error will be thrown during compilation:
Please, add `inline` to given QueryMeta[T]
In addition to manual creation of QueryMeta instances, there are several existing instances of QueryMeta: QueryMeta.snakeCase QueryMeta.camelCase QueryMeta.upperCamelCase
Also they can be combined with manual fields renaming:
import oolong.bson.BsonDecoder
import oolong.bson.BsonEncoder
import oolong.bson.given
import oolong.bson.meta.*
import oolong.bson.meta.QueryMeta
case class Student(firstName: String, lastName: String, previousUniversity: String) derives BsonEncoder, BsonDecoder
object Student:
inline given QueryMeta[Student] = QueryMeta.snakeCase.withRenaming(_.firstName -> "name")
val s = Student("Alexander", "Bloom", "MSU")
val bson = s.bson
// bson printed form is: {"name": "Alexander", "last_name": "Bloom", "previous_university": "MSU"}
If fields of a class T
are not renamed, you don't need to provide any instance, even if some other class U
has a field of type T
.
Macro automatically searches for instances of QueryMeta for all fields, types of which are case classes, and if not found, assumes that fields are not renamed, and then continues doing it recursively
When we need to unwrap an A
from Option[A]
, we don't use map
/ flatMap
/ etc.
We use !!
to reduce verbosity:
case class Person(name: String, address: Option[Address])
case class Address(city: String)
val q = query[Person](_.address.!!.city == "Amsterdam")
Similar to Quill, Oolong provides a quoted DSL, which means that the code you write inside query(...)
and update
blocks never gets to execute.
Since we don't have to worry about runtime exceptions, we can tell the compiler to relax and give us the type that we want.
If you need to use a feature that's not supported by oolong, you can write the target subquery manually and combine it with the high level query DSL:
val q = query[Person](_.name == "Joe" && unchecked(
BsonDocument(Seq(
("address.city", BsonDocument(Seq(
("$eq", BsonString("Amsterdam"))
)))
))
))
It's possible to reuse a query by defining an 'inline def':
inline def cityFilter(doc: Person) = doc.address.!!.city == "Amsterdam"
val q = query[Person](p => p.name == "Joe" && cityFilter(p))
- elasticsearch support
- aggregation pipelines for Mongo