Data processing with ML and LLM
Sparrow is an innovative open-source solution for efficient data extraction and processing from various documents and images. It seamlessly handles forms, invoices, receipts, and other unstructured data sources. Sparrow stands out with its modular architecture, offering independent services and pipelines all optimized for robust performance. One of the critical functionalities of Sparrow - pluggable architecture. You can easily integrate and run data extraction pipelines using tools and frameworks like LlamaIndex, Haystack, or Unstructured. Sparrow enables local LLM data extraction pipelines through Ollama or Apple MLX. With Sparrow solution you get API, which helps to process and transform your data into structured output, ready to be integrated with custom workflows.
Sparrow Agents - with Sparrow you can build independent LLM agents, and use API to invoke them from your system.
List of available agents:
- llamaindex - RAG pipeline with LlamaIndex for PDF processing
- vllamaindex - RAG pipeline with LLamaIndex multimodal for image processing
- vprocessor - RAG pipeline with OCR and LlamaIndex for image processing
- haystack - RAG pipeline with Haystack for PDF processing
- fcall - Function call pipeline
- unstructured-light - RAG pipeline with Unstructured and LangChain, supports PDF and image processing
- unstructured - RAG pipeline with Weaviate vector DB query, Unstructured and LangChain, supports PDF and image processing
- instructor - RAG pipeline with Unstructured and Instructor libraries, supports PDF and image processing. Works great for JSON response generation
- sparrow-data-ocr - OCR service, providing optical character recognition as part of the Sparrow.
- sparrow-data-parse - Sparrow library with helpful methods for data pre-processing for LLM.
- sparrow-ml-llm - LLM RAG pipeline, Sparrow service for data extraction and document processing.
- sparrow-ui - Dashboard UI for LLM RAG pipeline.
Sparrow implementation with Donut ML model - sparrow-donut
- Install Weaviate vector DB, if you are planning to use Sparrow agent, which runs Weaviate (for example
llamaindex
orunstructured
) - Install
pyenv
and then install Python into your environment - Create virtual environment for the Sparrow agent you want to run
- Install requirements for the Sparrow agent you want to use. Keep in mind, depending on OS, it could be required to do additional install steps for some of the libraries (for example PaddleOCR or Unstructured)
- Run Sparrow either from CLI or from API. You need to start API endpoint
- Pass field names and types you want to extract from the document
- Some of the Sparrow agents (
vprocessor
,instructor
, etc.) support both PDF and image formats
See detailed instructions below.
- Install Weaviate local DB with Docker:
docker compose up -d
- Sparrow setup
Setup Python Environment (Sparrow is tested with Python 3.10.4) with pyenv
:
- Install
pyenv
:
If you haven't already installed pyenv
, you can do so using Homebrew with the following command:
brew update
brew install pyenv
- Install the desired Python version:
With pyenv
installed, you can now install a specific version of Python. For example, to install Python 3.10.4, you would use:
pyenv install 3.10.4
You can check available Python versions by running pyenv install --list
.
- Set the global Python version:
Once the installation is complete, you can set the desired Python version as the default (global) version on your system:
pyenv global 3.10.4
This command sets Python 3.10.4 as the default version for all shells.
- Verify the change:
To ensure the change was successful, you can verify the current Python version by running:
python --version
If the output doesn’t reflect the change, you may need to restart your terminal or add pyenv
to your shell's initialization script as follows:
- Configure your shell's initialization script:
Add pyenv
to your shell by adding the following lines to your ~/.bash_profile
, ~/.zprofile
, ~/.bashrc
, or ~/.zshrc
file:
export PATH="$HOME/.pyenv/bin:$PATH"
eval "$(pyenv init --path)"
eval "$(pyenv init -)"
After adding these lines, restart your terminal or source your profile script with source ~/.bash_profile
(or the appropriate file for your shell).
Create Virtual Environments to Run Sparrow Agents
- Create virtual environments in
sparrow-ml/llm
folder:
python -m venv .env_llamaindex
python -m venv .env_haystack
python -m venv .env_instructor
python -m venv .env_unstructured
.env_llamaindex
is used for LLM RAG with llamaindex
, vllamaindex
and vprocessor
agents, .env_haystack
is used for LLM RAG with haystack
agent, and .env_instructor
is used for LLM function calling with fcall
agent and for instructor
RAG agent. .env_unstructured
is used for unstructured-light
and unstructured
agents.
- Create virtual environment in
sparrow-data/ocr
folder:
python -m venv .env_ocr
Activate Virtual Environments and Install Dependencies
Activate each environment and install its dependencies using the corresponding requirements.txt
file.
For llamaindex
environment:
- Activate the environment:
source .env_llamaindex/bin/activate
- Install dependencies:
pip install -r requirements_llamaindex.txt
Repeat the same for haystack
, instructor
and unstructured
environments.
Run Sparrow
You can run Sparrow on CLI or through API. To run on CLI, use sparrow.sh
script. Run it from corresponding virtual environment, depending which agent you want to execute.
- Install Ollama and pull LLM model specified in config.yml
Follow the install steps outlined here:
- Sparrow OCR services install steps
Copy text PDF files to the data
folder or use sample data provided in the data
folder.
This step is required for llamaindex
or haystack
agents only.
Run the script, to convert text to vector embeddings and save in Weaviate. By default it will use llamaindex
agent. Example with llamaindex
agent:
./sparrow.sh ingest --file-path /data/invoice_1.pdf --agent llamaindex --index-name Sparrow_llamaindex_doc1
Example with haystack
agent:
./sparrow.sh ingest --file-path /data/invoice_1.pdf --agent haystack --index-name Sparrow_haystack_doc1
Run the script, to process data with LLM RAG and return the answer. By default, it will use llamaindex
agent. You can specify other agents (see ingest example), such as haystack
:
./sparrow.sh "invoice_number, invoice_date, client_name, client_address, client_tax_id, seller_name, seller_address,
seller_tax_id, iban, names_of_invoice_items, gross_worth_of_invoice_items, total_gross_worth" "int, str, str, str, str,
str, str, str, str, List[str], List[float], str" --agent llamaindex --index-name Sparrow_llamaindex_doc1
Answer:
{
"invoice_number": 61356291,
"invoice_date": "09/06/2012",
"client_name": "Rodriguez-Stevens",
"client_address": "2280 Angela Plain, Hortonshire, MS 93248",
"client_tax_id": "939-98-8477",
"seller_name": "Chapman, Kim and Green",
"seller_address": "64731 James Branch, Smithmouth, NC 26872",
"seller_tax_id": "949-84-9105",
"iban": "GB50ACIE59715038217063",
"names_of_invoice_items": [
"Wine Glasses Goblets Pair Clear Glass",
"With Hooks Stemware Storage Multiple Uses Iron Wine Rack Hanging Glass",
"Replacement Corkscrew Parts Spiral Worm Wine Opener Bottle Houdini",
"HOME ESSENTIALS GRADIENT STEMLESS WINE GLASSES SET OF 4 20 FL OZ (591 ml) NEW"
],
"gross_worth_of_invoice_items": [
66.0,
123.55,
8.25,
14.29
],
"total_gross_worth": "$212,09"
}
Example with haystack
agent:
./sparrow.sh "invoice_number, invoice_date, client_name, client_address, client_tax_id, seller_name, seller_address,
seller_tax_id, iban, names_of_invoice_items, gross_worth_of_invoice_items, total_gross_worth" "int, str, str, str, str,
str, str, str, str, List[str], List[float], str" --agent haystack --index-name Sparrow_haystack_doc1
To run multimodal agent, use vllamaindex
flag:
./sparrow.sh "guest_no, cashier_name" "int, str" --agent vllamaindex --file-path /data/inout-20211211_001.jpg
Use vprocessor
agent to run OCR + LLM, this works best to process scanned docs
./sparrow.sh "guest_no, cashier_name, transaction_number, names_of_receipt_items, authorized_amount, receipt_date" "int, str, int, List[str], str, str" --agent vprocessor --file-path /data/inout-20211211_001.jpg
LLM function call example:
./sparrow.sh assistant --agent "fcall" --query "Exxon"
Answer:
{
"company": "Exxon",
"ticker": "XOM"
}
The stock price of the Exxon is 111.2699966430664. USD
Use unstructured-light
agent to run RAG pipeline with Unstructured library. It helps to improve data pre-processing for LLM. This agent supports PDF, JPG and PNG files
./sparrow.sh "invoice_number, invoice_date, total_gross_worth" "int, str, str" --agent unstructured-light --file-path /data/invoice_1.pdf
With unstructured-light
it is possible to specify option for table data processing only. This agent supports PDF, JPG and PNG files
./sparrow.sh "names_of_invoice_items, gross_worth_of_invoice_items, total_gross_worth" "List[str], List[str], str"
--agent unstructured-light --file-path /data/invoice_1.pdf --options tables
Use unstructured
agent to run RAG pipeline with Weaviate query (no separate step to ingest data is required) and Unstructured library. This agent supports PDF, JPG and PNG files
./sparrow.sh "invoice_number, invoice_date, total_gross_worth" "int, str, str" --agent unstructured --file-path /data/invoice_1.pdf
Use instructor
agent to run RAG pipeline with Unstructured and Instructor libraries. Unstructured helps to pre-process data for better LLM responses. Instructor simplifies RAG pipeline and ensures JSON responses. This agent supports both PDF, JPG and PNG files
./sparrow.sh "names_of_invoice_items, gross_worth_of_invoice_items, total_gross_worth" "List[str], List[str], str" --agent instructor --file-path /data/invoice_1.pdf
Sparrow enables you to run a local LLM RAG as an API using FastAPI, providing a convenient and efficient way to interact with our services. You can pass the name of the plugin to be used for the inference. By default, llamaindex
agent is used.
To set this up:
- Start the Endpoint
Launch the endpoint by executing the following command in your terminal:
python api.py
If you want to run agents from different Python virtual environments simultaneously, you can specify port, to avoid conflicts:
python api.py --port 8001
- Access the Endpoint Documentation
You can view detailed documentation for the API by navigating to:
http://127.0.0.1:8000/api/v1/sparrow-llm/docs
For visual reference, a screenshot of the FastAPI endpoint
API calls:
Ingest call with llamaindex
agent:
curl -X 'POST' \
'http://127.0.0.1:8000/api/v1/sparrow-llm/ingest' \
-H 'accept: application/json' \
-H 'Content-Type: multipart/form-data' \
-F 'agent=llamaindex' \
-F 'index_name=Sparrow_llamaindex_doc2' \
-F 'file=@invoice_1.pdf;type=application/pdf'
Ingest call with haystack
agent:
curl -X 'POST' \
'http://127.0.0.1:8000/api/v1/sparrow-llm/ingest' \
-H 'accept: application/json' \
-H 'Content-Type: multipart/form-data' \
-F 'agent=haystack' \
-F 'index_name=Sparrow_haystack_doc2' \
-F 'file=@invoice_1.pdf;type=application/pdf'
Inference call with llamaindex
agent:
curl -X 'POST' \
'http://127.0.0.1:8000/api/v1/sparrow-llm/inference' \
-H 'accept: application/json' \
-H 'Content-Type: multipart/form-data' \
-F 'fields=invoice_number' \
-F 'types=int' \
-F 'agent=llamaindex' \
-F 'index_name=Sparrow_llamaindex_doc2' \
-F 'file='
Inference call with haystack
agent:
curl -X 'POST' \
'http://127.0.0.1:8000/api/v1/sparrow-llm/inference' \
-H 'accept: application/json' \
-H 'Content-Type: multipart/form-data' \
-F 'fields=invoice_number' \
-F 'types=int' \
-F 'agent=haystack' \
-F 'index_name=Sparrow_haystack_doc2' \
-F 'file='
Inference call with multimodal agent vllamaindex
:
curl -X 'POST' \
'http://127.0.0.1:8000/api/v1/sparrow-llm/inference' \
-H 'accept: application/json' \
-H 'Content-Type: multipart/form-data' \
-F 'fields=guest_no, cashier_name' \
-F 'types=int, str' \
-F 'agent=vllamaindex' \
-F 'index_name=' \
-F 'file=@inout-20211211_001.jpg;type=image/jpeg'
Inference call with OCR + LLM agent vprocessor
:
curl -X 'POST' \
'http://127.0.0.1:8000/api/v1/sparrow-llm/inference' \
-H 'accept: application/json' \
-H 'Content-Type: multipart/form-data' \
-F 'fields=guest_no, cashier_name, transaction_number, names_of_receipt_items, authorized_amount, receipt_date' \
-F 'types=int, str, int, List[str], str, str' \
-F 'agent=vprocessor' \
-F 'index_name=' \
-F 'file=@inout-20211211_001.jpg;type=image/jpeg'
Inference call with unstructured-light
agent, this agent supports also JPG and PNG files:
curl -X 'POST' \
'http://127.0.0.1:8000/api/v1/sparrow-llm/inference' \
-H 'accept: application/json' \
-H 'Content-Type: multipart/form-data' \
-F 'fields=invoice_number, invoice_date, total_gross_worth' \
-F 'types=int, str, str' \
-F 'agent=unstructured-light' \
-F 'index_name=' \
-F 'options=' \
-F 'file=@invoice_1.pdf;type=application/pdf'
Inference call with unstructured-light
agent, using only tables option. This agent supports also JPG and PNG files:
curl -X 'POST' \
'http://127.0.0.1:8000/api/v1/sparrow-llm/inference' \
-H 'accept: application/json' \
-H 'Content-Type: multipart/form-data' \
-F 'fields=names_of_invoice_items, gross_worth_of_invoice_items, total_gross_worth' \
-F 'types=List[str], List[str], str' \
-F 'agent=unstructured-light' \
-F 'index_name=' \
-F 'options=tables' \
-F 'file=@invoice_1.pdf;type=application/pdf'
Inference call with unstructured
agent, this agent supports also JPG and PNG files:
curl -X 'POST' \
'http://127.0.0.1:8000/api/v1/sparrow-llm/inference' \
-H 'accept: application/json' \
-H 'Content-Type: multipart/form-data' \
-F 'fields=names_of_invoice_items, gross_worth_of_invoice_items, total_gross_worth' \
-F 'types=List[str], List[str], str' \
-F 'agent=unstructured' \
-F 'index_name=' \
-F 'options=' \
-F 'file=@invoice_1.pdf;type=application/pdf'
Inference call with instructor
agent, this agent supports also JPG and PNG files:
curl -X 'POST' \
'http://127.0.0.1:8000/api/v1/sparrow-llm/inference' \
-H 'accept: application/json' \
-H 'Content-Type: multipart/form-data' \
-F 'fields=names_of_invoice_items, gross_worth_of_invoice_items, total_gross_worth' \
-F 'types=List[str], List[str], str' \
-F 'agent=instructor' \
-F 'index_name=' \
-F 'options=' \
-F 'file=@invoice_1.pdf;type=application/pdf'
Document:
Request:
./sparrow.sh "invoice_number, invoice_date, client_name, client_address, client_tax_id, seller_name, seller_address,
seller_tax_id, iban, names_of_invoice_items, gross_worth_of_invoice_items, total_gross_worth" "int, str, str, str, str,
str, str, str, str, List[str], List[float], str" --agent llamaindex --index-name Sparrow_llamaindex_doc1
Response:
{
"invoice_number": 61356291,
"invoice_date": "09/06/2012",
"client_name": "Rodriguez-Stevens",
"client_address": "2280 Angela Plain, Hortonshire, MS 93248",
"client_tax_id": "939-98-8477",
"seller_name": "Chapman, Kim and Green",
"seller_address": "64731 James Branch, Smithmouth, NC 26872",
"seller_tax_id": "949-84-9105",
"iban": "GB50ACIE59715038217063",
"names_of_invoice_items": [
"Wine Glasses Goblets Pair Clear Glass",
"With Hooks Stemware Storage Multiple Uses Iron Wine Rack Hanging Glass",
"Replacement Corkscrew Parts Spiral Worm Wine Opener Bottle Houdini",
"HOME ESSENTIALS GRADIENT STEMLESS WINE GLASSES SET OF 4 20 FL OZ (591 ml) NEW"
],
"gross_worth_of_invoice_items": [
66.0,
123.55,
8.25,
14.29
],
"total_gross_worth": "$212,09"
}
Document:
Request:
./sparrow.sh "store_name, receipt_id, receipt_item_names, receipt_item_prices, receipt_date, receipt_store_id,
receipt_sold, receipt_returned, receipt_total" "str, str, List[str], List[str], str, int, int,
int, str" --agent vprocessor --file-path /data/ross-20211211_010.jpg
Response:
{
"store_name": "Ross",
"receipt_id": "Receipt # 0421-01-1602-1330-0",
"receipt_item_names": [
"400226513665 x hanes b1ue 4pk",
"400239602790 fruit premium 4pk"
],
"receipt_item_prices": [
"$9.99R",
"$12.99R"
],
"receipt_date": "11/26/21 10:35:05 AM",
"receipt_store_id": 421,
"receipt_sold": 2,
"receipt_returned": 0,
"receipt_total": "$25.33"
}
Sparrow is available under the GPL 3.0 license, promoting freedom to use, modify, and distribute the software while ensuring any modifications remain open source under the same license. This aligns with our commitment to supporting the open-source community and fostering collaboration.
Additionally, we recognize the diverse needs of organizations, including small to medium-sized enterprises (SMEs). Therefore, Sparrow is also offered for free commercial use to organizations with gross revenue below $5 million USD in the past 12 months, enabling them to leverage Sparrow without the financial burden often associated with high-quality software solutions.
For businesses that exceed this revenue threshold or require usage terms not accommodated by the GPL 3.0 license—such as integrating Sparrow into proprietary software without the obligation to disclose source code modifications—we offer dual licensing options. Dual licensing allows Sparrow to be used under a separate proprietary license, offering greater flexibility for commercial applications and proprietary integrations. This model supports both the project's sustainability and the business's needs for confidentiality and customization.
If your organization is seeking to utilize Sparrow under a proprietary license, or if you are interested in custom workflows, consulting services, or dedicated support and maintenance options, please contact us at abaranovskis@redsamuraiconsulting.com. We're here to provide tailored solutions that meet your unique requirements, ensuring you can maximize the benefits of Sparrow for your projects and workflows.
Licensed under the GPL 3.0. Copyright 2020-2024 Katana ML, Andrej Baranovskij. Copy of the license.