Awesome TensorFlow
A curated list of awesome TensorFlow experiments, libraries, and projects. Inspired by awesome-machine-learning.
What is TensorFlow?
TensorFlow is an open source software library for numerical computation using data flow graphs. In other words, the best way to build deep learning models.
More info here.
Table of Contents ## Tutorials * [TensorFlow Tutorial 1](https://github.com/pkmital/tensorflow_tutorials) - From the basics to slightly more interesting applications of TensorFlow * [TensorFlow Tutorial 2](https://github.com/nlintz/TensorFlow-Tutorials) - Introduction to deep learning based on Google's TensorFlow framework. These tutorials are direct ports of Newmu's Theano * [TensorFlow Examples](https://github.com/aymericdamien/TensorFlow-Examples) - TensorFlow tutorials and code examples for beginners * [Sungjoon's TensorFlow-101](https://github.com/sjchoi86/Tensorflow-101) - TensorFlow tutorials written in Python with Jupyter Notebook * [Terry Um’s TensorFlow Exercises](https://github.com/terryum/TensorFlow_Exercises) - Re-create the codes from other TensorFlow examples * [Installing TensorFlow on Raspberry Pi 3](https://github.com/samjabrahams/tensorflow-on-raspberry-pi) - TensorFlow compiled and running properly on the Raspberry Pi * [Classification on time series](https://github.com/guillaume-chevalier/LSTM-Human-Activity-Recognition) - Recurrent Neural Network classification in TensorFlow with LSTM on cellphone sensor data ## Models/Projects * [Domain Transfer Network](https://github.com/yunjey/dtn-tensorflow) - Implementation of Unsupervised Cross-Domain Image Generation * [Show, Attend and Tell] (https://github.com/yunjey/show_attend_and_tell) - Attention Based Image Caption Generator * [Neural Style](https://github.com/cysmith/neural-style-tf) Implementation of Neural Style * [Pretty Tensor](https://github.com/google/prettytensor) - Pretty Tensor provides a high level builder API * [Neural Style](https://github.com/anishathalye/neural-style) - An implementation of neural style * [AlexNet3D](https://github.com/denti/AlexNet3D) - An implementations of AlexNet3D. Simple AlexNet model but with 3D convolutional layers (conv3d). * [TensorFlow White Paper Notes](https://github.com/samjabrahams/tensorflow-white-paper-notes) - Annotated notes and summaries of the TensorFlow white paper, along with SVG figures and links to documentation * [NeuralArt](https://github.com/ckmarkoh/neuralart_tensorflow) - Implementation of A Neural Algorithm of Artistic Style * [Deep-Q learning Pong with TensorFlow and PyGame](http://www.danielslater.net/2016/03/deep-q-learning-pong-with-tensorflow.html) * [Generative Handwriting Demo using TensorFlow](https://github.com/hardmaru/write-rnn-tensorflow) - An attempt to implement the random handwriting generation portion of Alex Graves' paper * [Neural Turing Machine in TensorFlow](https://github.com/carpedm20/NTM-tensorflow) - implementation of Neural Turing Machine * [GoogleNet Convolutional Neural Network Groups Movie Scenes By Setting] (https://github.com/agermanidis/thingscoop) - Search, filter, and describe videos based on objects, places, and other things that appear in them * [Neural machine translation between the writings of Shakespeare and modern English using TensorFlow](https://github.com/tokestermw/tensorflow-shakespeare) - This performs a monolingual translation, going from modern English to Shakespeare and vis-versa. * [Chatbot](https://github.com/Conchylicultor/DeepQA) - Implementation of ["A neural conversational model"](http://arxiv.org/abs/1506.05869) * [Colornet - Neural Network to colorize grayscale images] (https://github.com/pavelgonchar/colornet) - Neural Network to colorize grayscale images * [Neural Caption Generator](https://github.com/jazzsaxmafia/show_attend_and_tell.tensorflow) - Implementation of ["Show and Tell"](http://arxiv.org/abs/1411.4555) * [Neural Caption Generator with Attention](https://github.com/jazzsaxmafia/show_attend_and_tell.tensorflow) - Implementation of ["Show, Attend and Tell"](http://arxiv.org/abs/1502.03044) * [Weakly_detector](https://github.com/jazzsaxmafia/Weakly_detector) - Implementation of ["Learning Deep Features for Discriminative Localization"](http://cnnlocalization.csail.mit.edu/) * [Dynamic Capacity Networks](https://github.com/jazzsaxmafia/dcn.tf) - Implementation of ["Dynamic Capacity Networks"](http://arxiv.org/abs/1511.07838) * [HMM in TensorFlow](https://github.com/dwiel/tensorflow_hmm) - Implementation of viterbi and forward/backward algorithms for HMM * [DeepOSM](https://github.com/trailbehind/DeepOSM) - Train TensorFlow neural nets with OpenStreetMap features and satellite imagery. * [DQN-tensorflow](https://github.com/devsisters/DQN-tensorflow) - TensorFlow implementation of DeepMind's 'Human-Level Control through Deep Reinforcement Learning' with OpenAI Gym by Devsisters.com * [Highway Network](https://github.com/fomorians/highway-cnn) - TensorFlow implementation of ["Training Very Deep Networks"](http://arxiv.org/abs/1507.06228) with a [blog post](https://medium.com/jim-fleming/highway-networks-with-tensorflow-1e6dfa667daa#.ndicn1i27) * [Sentence Classification with CNN](https://github.com/dennybritz/cnn-text-classification-tf) - TensorFlow implementation of ["Convolutional Neural Networks for Sentence Classification"](http://arxiv.org/abs/1408.5882) with a [blog post](http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/) * [End-To-End Memory Networks](https://github.com/domluna/memn2n) - Implementation of [End-To-End Memory Networks](http://arxiv.org/abs/1503.08895) * [Character-Aware Neural Language Models](https://github.com/carpedm20/lstm-char-cnn-tensorflow) - TensorFlow implementation of [Character-Aware Neural Language Models](http://arxiv.org/abs/1508.06615) * [YOLO TensorFlow ++](https://github.com/thtrieu/yolotf) - TensorFlow implementation of 'YOLO: Real-Time Object Detection', with training and an actual support for real-time running on mobile devices. * [Wavenet](https://github.com/ibab/tensorflow-wavenet) - This is a TensorFlow implementation of the [WaveNet generative neural network architecture](https://deepmind.com/blog/wavenet-generative-model-raw-audio/) for audio generation. * [Mnemonic Descent Method](https://github.com/trigeorgis/mdm) - Tensorflow implementation of ["Mnemonic Descent Method: A recurrent process applied for end-to-end face alignment"](http://ibug.doc.ic.ac.uk/media/uploads/documents/trigeorgis2016mnemonic.pdf) ## Powered by TensorFlow * [YOLO TensorFlow](https://github.com/gliese581gg/YOLO_tensorflow) - Implementation of 'YOLO : Real-Time Object Detection' * [android-yolo](https://github.com/natanielruiz/android-yolo) - Real-time object detection on Android using the YOLO network, powered by TensorFlow. * [Magenta](https://github.com/tensorflow/magenta) - Research project to advance the state of the art in machine intelligence for music and art generation ## Libraries * [Scikit Flow (TF Learn)](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/learn/python/learn) - Simplified interface for Deep/Machine Learning (now part of TensorFlow) * [tensorflow.rb](https://github.com/somaticio/tensorflow.rb) - TensorFlow native interface for ruby using SWIG
- tflearn - Deep learning library featuring a higher-level API
- TensorFlow-Slim - High-level library for defining models
- TensorFrames - TensorFlow binding for Apache Spark
- caffe-tensorflow - Convert Caffe models to TensorFlow format
- keras - Minimal, modular deep learning library for TensorFlow and Theano
- SyntaxNet: Neural Models of Syntax - A TensorFlow implementation of the models described in Globally Normalized Transition-Based Neural Networks, Andor et al. (2016)
- keras-js - Run Keras models (tensorflow backend) in the browser, with GPU support
- NNFlow Simple framework allowing to read-in ROOT NTuples by converting them to a Numpy array and then use them in Google Tensorflow.
Official announcements
- TensorFlow: smarter machine learning, for everyone - An introduction to TensorFlow
- Announcing SyntaxNet: The World’s Most Accurate Parser Goes Open Source - Release of SyntaxNet, "an open-source neural network framework implemented in TensorFlow that provides a foundation for Natural Language Understanding systems.
Blog posts
- Why TensorFlow will change the Game for AI
- TensorFlow for Poets - Goes over the implementation of TensorFlow
- Introduction to Scikit Flow - Simplified Interface to TensorFlow - Key Features Illustrated
- Building Machine Learning Estimator in TensorFlow - Understanding the Internals of TensorFlow Learn Estimators
- TensorFlow - Not Just For Deep Learning
- The indico Machine Learning Team's take on TensorFlow
- The Good, Bad, & Ugly of TensorFlow - A survey of six months rapid evolution (+ tips/hacks and code to fix the ugly stuff), Dan Kuster at Indico, May 9, 2016
- Fizz Buzz in TensorFlow - A joke by Joel Grus
- RNNs In TensorFlow, A Practical Guide And Undocumented Features - Step-by-step guide with full code examples on GitHub.
- Using TensorBoard to Visualize Image Classification Retraining in TensorFlow
- TFRecords Guide semantic segmentation and handling the TFRecord file format.
If you want to contribute to this list (please do), send me a pull request or contact me @jtoy Also, if you notice that any of the above listed repositories should be deprecated, due to any of the following reasons:
- Repository's owner explicitly say that "this library is not maintained".
- Not committed for long time (2~3 years).
More info on the guidelines
## Credits