- NEBULA v1.5.3
- Overview
- Installation
- Functions
- Basic usage
- Specifying scaling factors
- Using Seurat/SingleCellExperiment Objects
- Difference between NEBULA-LN and NEBULA-HL
- Filtering low-expression genes
- Checking convergence for the summary statistics and quality control
- Using other mixed models
- Special attention paid to testing subject-level variables
- Testing contrasts
- Extracting marginal and conditional Pearson residuals
- Parallel computing
- References
The nebula package is an R package that provides fast algorithms for fitting negative binomial and Poisson mixed models for analyzing large-scale, multi-subject single-cell data. The package nebula accounts for the hierarchical structure of the data by decomposing the total overdispersion into between-subject and within-subject components using a negative binomial mixed model (NBMM). Users can utilize the package for various tasks, such as identifying marker genes, testing treatment effects, detecting genes with differential expression, performing cell-level co-expression analysis, and obtaining Pearson residuals for downstream analyses.
More details can be found in (He et al. 2021) (https://www.nature.com/articles/s42003-021-02146-6).
To install the latest version from github:
install.packages("devtools")
library(devtools)
install_github("lhe17/nebula")
During installation, the nebula package may first install the Rfast package, which requires the presence of GSL in the environment. The installation also requires Rcpp-1.0.7 and has been tested on R-4.1.0. Starting from version 1.2.0, nebula is no longer compatible with R-3.6 or earlier versions of R. Users who have R-3.6 may install version 1.1.8 via R-forge (https://r-forge.r-project.org/R/?group_id=2407). However, it is not recommended to use an older version of nebula.
Please contact hyx520101@gmail.com for more information.
The current version provides the following functions.
nebula
: performs an association analysis using NBMMs given a count matrix and subject IDs.group_cell
: reorders cells to group them by the subject IDs.nbresidual
: extracts Pearson residuals from the fitted model.scToNeb
: retrieves data fromSeurat
orSingleCellExperiment
for callingnebula
.
We use an example data set to illustrate how to use nebula to perform an association analysis of multi-subject single-cell data. The example data set attached to the R package can be loaded as follows.
library(nebula)
data(sample_data)
The example data set includes a count matrix of 6030 cells and 10 genes from 30 subjects.
dim(sample_data$count)
#> [1] 10 6176
The count matrix can be a matrix object or a sparse dgCMatrix object
(the same format as in Seurat
). The elements should be integers.
sample_data$count[1:5,1:5]
#> 5 x 5 sparse Matrix of class "dgCMatrix"
#>
#> A . . . . .
#> B . . . . .
#> C . 1 2 . .
#> D . . . . .
#> E . . . . .
The subject IDs of each cell are stored in sample_data$sid
. The
subject IDs can be a character or numeric vector, the length of which
should equal the number of cells.
head(sample_data$sid)
#> [1] "1" "1" "1" "1" "1" "1"
table(sample_data$sid)
#>
#> 1 10 11 12 13 14 15 16 17 18 19 2 20 21 22 23 24 25 26 27
#> 187 230 185 197 163 216 211 195 200 239 196 223 198 202 213 210 199 214 237 200
#> 28 29 3 30 4 5 6 7 8 9
#> 205 183 222 191 205 225 211 197 215 207
The next step is to build a design matrix for the predictors. The
example data set includes a data frame consisting of three predictors
stored in sample_data$pred
. To build the design matrix, we can use the
function model.matrix
. The intercept term must be included in the
design matrix. Each column in the design matrix should have a unique
variable name.
head(sample_data$pred)
#> X1 X2 cc
#> 1 0.6155094 0.9759191 control
#> 2 1.4608092 0.9759191 case
#> 3 1.6675054 0.9759191 control
#> 4 -0.1717715 0.9759191 case
#> 5 0.2277492 0.9759191 control
#> 6 -0.2635516 0.9759191 control
df = model.matrix(~X1+X2+cc, data=sample_data$pred)
head(df)
#> (Intercept) X1 X2 cccontrol
#> 1 1 0.6155094 0.9759191 1
#> 2 1 1.4608092 0.9759191 0
#> 3 1 1.6675054 0.9759191 1
#> 4 1 -0.1717715 0.9759191 0
#> 5 1 0.2277492 0.9759191 1
#> 6 1 -0.2635516 0.9759191 1
The association analysis between the gene expression and the predictors
can then be conducted using the nebula
function as follows. The count
matrix is an M by N matrix, where M is the number of genes, and
N is the number of cells. The function by default fits the negative
binomial gamma mixed model (NBGMM) for each of the genes, and returns a
list of summary statistics including the fold change, p-values, and both
subject-level and cell-level overdispersions (σ2 and
ϕ−1). The p-values returned by nebula
are raw p-values
(not adjusted for multiple testing). Users can take advantage of a
multicore CPU by specifying the number of cores to use via the ncore
argument.
re = nebula(sample_data$count,sample_data$sid,pred=df,ncore=1)
#> Remove 0 genes having low expression.
#> Analyzing 10 genes with 30 subjects and 6176 cells.
#> Loading required package: foreach
#> Loading required package: future
#> Loading required package: rngtools
re
#> $summary
#> logFC_(Intercept) logFC_X1 logFC_X2 logFC_cccontrol se_(Intercept)
#> 1 -1.902455 -0.016755225 -0.097867225 0.047278197 0.06335820
#> 2 -2.046638 -0.002679074 -0.053812464 -0.022293899 0.06181112
#> 3 -2.033211 0.017954707 0.002398445 -0.048296661 0.08695028
#> 4 -2.008542 -0.005698984 -0.027780387 0.077357703 0.05509711
#> 5 -1.979437 0.011557090 -0.025198987 0.032890493 0.06155853
#> 6 -1.949991 0.013483039 -0.012548791 -0.031590577 0.07440949
#> 7 -1.969248 -0.003531361 0.075230699 -0.009075031 0.06185028
#> 8 -1.964371 0.013639930 -0.061302756 -0.059284665 0.07786361
#> 9 -2.072699 -0.017372176 -0.043828288 0.026624998 0.05737632
#> 10 -2.045646 0.030742876 0.022260805 -0.025516032 0.06842796
#> se_X1 se_X2 se_cccontrol p_(Intercept) p_X1 p_X2
#> 1 0.03534659 0.06449424 0.06879634 4.362617e-198 0.6354810 0.1291514
#> 2 0.03787429 0.06255849 0.07385888 2.052788e-240 0.9436079 0.3896819
#> 3 0.03696089 0.09238230 0.07258521 6.275230e-121 0.6271261 0.9792875
#> 4 0.03704556 0.05624824 0.07252600 5.822948e-291 0.8777381 0.6213846
#> 5 0.03750948 0.06101307 0.07331551 7.432319e-227 0.7579977 0.6795995
#> 6 0.03623477 0.07321208 0.07087566 2.257914e-151 0.7098168 0.8639067
#> 7 0.03631619 0.06068697 0.07133730 1.872102e-222 0.9225364 0.2151043
#> 8 0.03551903 0.07955877 0.06969748 1.957495e-140 0.7009654 0.4409831
#> 9 0.03816039 0.05767972 0.07453316 9.307495e-286 0.6489358 0.4473406
#> 10 0.03798694 0.06917485 0.07374591 2.292903e-196 0.4183419 0.7476005
#> p_cccontrol gene_id gene
#> 1 0.4919443 1 A
#> 2 0.7627706 2 B
#> 3 0.5058082 3 C
#> 4 0.2861434 4 D
#> 5 0.6537089 5 E
#> 6 0.6558008 6 F
#> 7 0.8987718 7 G
#> 8 0.3949916 8 H
#> 9 0.7209245 9 I
#> 10 0.7293432 10 J
#>
#> $overdispersion
#> Subject Cell
#> 1 0.08125256 0.8840821
#> 2 0.07102681 0.9255032
#> 3 0.17159404 0.9266395
#> 4 0.05026165 0.8124118
#> 5 0.07075366 1.2674146
#> 6 0.12086392 1.1096065
#> 7 0.07360445 0.9112956
#> 8 0.13571262 0.7549629
#> 9 0.05541398 0.8139652
#> 10 0.09496649 0.9410035
#>
#> $convergence
#> [1] 1 1 1 1 1 1 1 1 1 1
#>
#> $algorithm
#> [1] "NBGMM (LN)" "NBGMM (LN)" "NBGMM (LN)" "NBGMM (LN)" "NBGMM (LN)"
#> [6] "NBGMM (LN)" "NBGMM (LN)" "NBGMM (LN)" "NBGMM (LN)" "NBGMM (LN)"
#>
#> $covariance
#> NULL
#>
#> $random_effect
#> NULL
The cells in the count matrix need to be grouped by the subjects (that
is, the cells of the same subject should be placed consecutively) before
using as the input to the function nebula
. If the cells are not
grouped, the function group_cell
can be used to first reorder the
cells, as shown below. If a scaling factor is specified by the user, it
should also be included in group_cell
. If the cells are already
grouped, group_cell
will return NULL.
data_g = group_cell(count=sample_data$count,id=sample_data$sid,pred=df)
re = nebula(data_g$count,data_g$id,pred=data_g$pred)
If pred
is not specified, nebula
will fit the model with an
intercept term by default. This can be used when only the
overdispersions are of interest.
The scaling factor for each cell is specified in nebula
using the
argument offset
. The argument offset
has to be a vector of length
N containing positive values. Note that log(offset
) will be the
offset term in the NBMM. Common scaling factors can be the library size
of a cell or a normalizing factor adjusted using e.g., TMM. If not
specified, nebula
will set offset
as one by default, which means
that each cell is treated equally. If the input count matrix is already
normalized by another tool, e.g., scTransform, then you should not
specify offset
. However, since nebula
directly models the raw
counts, it is not recommended to use a normalized count matrix for
nebula
.
library(Matrix)
# An example of using the library size of each cell as the scaling factor
re = nebula(sample_data$count,sample_data$sid,pred=df,offset=Matrix::colSums(sample_data$count))
If a single cell data processing package such as Seurat
or
SingleCellExperiment
was used, nebula can be easily implemented using
the assistance of the helper function scToNeb
. Assuming that the
metadata relevant to subject IDs and predictors are available in the
object, scToNeb
can retrieve and organize these objects and output a
list that is similar to the example data provided in this vignette. For
a SingleCellExperiment
object, assay
is not required. For a Seurat
object, assay
can also be specified to fit data from other assays. The
nebula
package contains a sample Seurat object obtained from (Lab
2019) (https://github.com/satijalab/seurat-data) comprised of
pancreatic cells across eight samples.
library(nebula)
data("sample_seurat")
seuratdata <- scToNeb(obj = sample_seurat, assay = "RNA", id = "replicate", pred = c("celltype","tech"), offset="nCount_RNA")
## Make sure that the variables do not contain NA; Otherwise, df would have fewer rows.
df = model.matrix(~celltype+tech, data=seuratdata$pred)
## include only the first two cell types in the model to avoid separation due to too many binary variables
data_g = group_cell(count=seuratdata$count,id=seuratdata$id,pred=df[,c("(Intercept)","celltypeactivated_stellate","techcelseq2","techfluidigmc1","techindrop", "techsmartseq2")],offset=seuratdata$offset)
re = nebula(data_g$count,data_g$id,pred=data_g$pred,offset=data_g$offset)
The output will be a list with the first element containing counts
,
the second containing a data.frame
with all listed predictors, the
third containing a character vector with all subject IDs, and the fourth
containing the normalizing factor. Users can also use other scaling
factors that may be stored within the object’s metadata as a string in
the offset
argument. If subject ids are un-ordered, group_cell
can
be used.
In nebula, a user can choose one of the two algorithms to fit an
NBGMM. NEBULA-LN uses an approximated likelihood based on the law of
large numbers, and NEBULA-HL uses an h-likelihood. A user can select
these methods through method='LN'
or method='HL'
. NEBULA-LN is
faster and performs particularly well when the number of cells per
subject (CPS) is large. In addition, NEBULA-LN is much more accurate in
estimating a very large subject-level overdispersion. In contrast,
NEBULA-HL is slower but more accurate in estimating the cell-level
overdispersion.
In the following analysis of the example data set comprising ~200 cells per subject, the difference of the estimated cell-level overdispersions between NEBULA-LN and NEBULA-HL is ~5% for most genes.
re_ln = nebula(sample_data$count,sample_data$sid,pred=df,offset=sample_data$offset,method='LN',ncore=1)
#> Remove 0 genes having low expression.
#> Analyzing 10 genes with 30 subjects and 6176 cells.
re_hl = nebula(sample_data$count,sample_data$sid,pred=df,offset=sample_data$offset,method='HL',ncore=1)
#> Remove 0 genes having low expression.
#> Analyzing 10 genes with 30 subjects and 6176 cells.
## compare the estimated overdispersions
cbind(re_hl$overdispersion,re_ln$overdispersion)
#> Subject Cell Subject Cell
#> 1 0.08432318 0.9284699 0.08125256 0.8840821
#> 2 0.07455464 0.9726513 0.07102681 0.9255032
#> 3 0.17403263 0.9817569 0.17159404 0.9266395
#> 4 0.05352153 0.8516679 0.05026165 0.8124118
#> 5 0.07480033 1.3254379 0.07075366 1.2674146
#> 6 0.12372424 1.1653129 0.12086392 1.1096065
#> 7 0.07724825 0.9578169 0.07360445 0.9112956
#> 8 0.13797645 0.7991948 0.13571262 0.7549629
#> 9 0.05879495 0.8568850 0.05541398 0.8139652
#> 10 0.09782333 0.9940222 0.09496649 0.9410035
Such difference has little impact on testing fixed-effects predictors under this sample size.
## compare the p-values for testing the predictors using NEBULA-LN and NEBULA-HL
cbind(re_hl$summary[,10:12],re_ln$summary[,10:12])
#> p_X1 p_X2 p_cccontrol p_X1 p_X2 p_cccontrol
#> 1 0.6373036 0.1346298 0.4950795 0.6354810 0.1291514 0.4919443
#> 2 0.9444825 0.3977109 0.7626827 0.9436079 0.3896819 0.7627706
#> 3 0.6282384 0.9787881 0.5087304 0.6271261 0.9792875 0.5058082
#> 4 0.8786074 0.6278827 0.2868256 0.8777381 0.6213846 0.2861434
#> 5 0.7596198 0.6872259 0.6544751 0.7579977 0.6795995 0.6537089
#> 6 0.7134192 0.8656686 0.6576835 0.7098168 0.8639067 0.6558008
#> 7 0.9216994 0.2230964 0.8977251 0.9225364 0.2151043 0.8987718
#> 8 0.7017082 0.4443604 0.3955342 0.7009654 0.4409831 0.3949916
#> 9 0.6505414 0.4561470 0.7238323 0.6489358 0.4473406 0.7209245
#> 10 0.4199828 0.7510837 0.7308108 0.4183419 0.7476005 0.7293432
The bias of NEBULA-LN in estimating the cell-level overdispersion gets
larger when the CPS value becomes lower or the gene expression is more
sparse. If the CPS value is <30, nebula
will set method='HL'
regardless of the user’s input.
When NEBULA-LN is used, the user can opt for better accuracy of estimating a smaller subject-level overdispersion through the argument κ. NEBULA first fits the data using NEBULA-LN. If the estimated κ for a gene is smaller than the user-defined value, NEBULA-HL will be used to estimate the subject-level overdispersion for the gene. The default value of κ is 800, which can provide a good estimate of the subject-level overdispersion as low as ~0.005. Our simulation results suggest that κ = 200 is often sufficient for achieving a well controlled false positive rate of testing a cell-level predictor. We do not recommend using a smaller κ than 200. Specifying a larger κ can obtain a more accurate estimate of a smaller subject-level overdispersion when the cell-level overdispersion is large, but will be computationally slower. On the other hand, testing a subject-level predictor (i.e., a variable whose values are shared across all cells from a subject, such as age, sex, treatment, genotype, etc) is more sensitive to the accuracy of the estimated subject-level overdispersion. So we recommend using κ = 800 (as default) or even larger when testing a subject-level predictor. Another option to testing a subject-level predictor is to use a Poisson gamma mixed model, which is extremely fast (>50x faster than NEBULA-LN) and will be described below.
NEBULA-HL automatically uses a higher-order Laplace approximation for
low-expressed genes of which the average count per subject is less than
3. The higher-order Laplace approximation substantially increases the
accuracy for estimating the subject-level overdispersion for
low-expressed genes and controls the false positive rate. Nevertheless,
we recommend removing genes with very low expression from the analysis
because there is little statistical power for these genes. Filtering out
low-expressed genes can be specified by cpc=0.005
(i.e., counts per
cell<0.5%). The argument cpc
is defined by the ratio between the
total count of the gene and the number of cells.
nebula reports convergence information about the estimation algorithm for each gene along with the summary statistics. This is useful and important information for quality control to filter out genes of which the estimation procedure potentially does not converge. Generally, a convergence code ≤ -20 suggests that the algorithm does not converge well. The results should be interpreted with caution in these cases. The detailed information about the convergence codes is listed below. The failure of convergence may occur when the sample size is very small, there are too few positive counts, or the gene has huge overdispersions. In these cases, the likelihood can be flat, might reach the maximum at the infinity, or the optimization is sensitive to the initial values. For those genes that have a bad convergence code, in many cases, trying a different negative binomial mixed model (e.g., NBLMM, see below for more details) may solve the problem.
- Information about the convergence code:
- 1: The convergence is reached due to a sufficiently small improvement of the function value.
- -10: The convergence is reached because the gradients are close to zero (i.e., the critical point) and no improvement of the function value can be found.
- (!) -20: The optimization algorithm stops before the convergence because the maximum number of iterations is reached.
- (!) -25: The Hessian matrix is either almost singular or not positive definite.
- (!) -30: The convergence fails because the likelihood function returns NaN.
- (!) -40: The convergence fails because the critical point is not reached and no improvement of the function value can be found.
- (!) -50: Only used for the PMM, indicating a failure of convergence.
- (!) -60: At least one of the estimated overdispersions reaches its upper bound.
Depending on the concrete application, the estimated gene-specific overdispersions can also be taken into consideration in quality control. For example, when testing differential expression for a variable, genes with a very large estimated cell-level overdispersion should be filtered out because such genes have huge unexplained noises. A large cell-level overdispersion is generally rare in UMI-based single cell data, especially among abundantly expressed genes, but more common in e.g., SMART-seq2 as PCR duplicates introduce substantial noises. It might be hard to give a precise cut-off for a large overdispersion because it also depends on the sample size of the data. Based on the empirical simulation study in (He et al. 2021), genes with an estimated cell-level overdispersion >100 should be removed for a data set with at least 50 cells per subject. On the other hand, if the purpose is to extract residuals for downstream analysis such as clustering, genes with a large cell-level overdispersion might be preferable because they have large variations. If the variable of interest is subject-level, genes with a very large subject-level overdispersion (>1) should be removed or interpreted cautiously as well.
In addition to the NBGMM, the nebula package provides efficient
estimation implementation for a Poisson gamma mixed model and a negative
binomial lognormal mixed model (NBLMM). This can be specified through
model="PMM"
and model="NBLMM"
, respectively. The NBLMM is the same
model as that adopted in the glmer.nb
function in the lme4 R
package, but is computationally much more efficient by setting
method='LN'
. The only difference between NBGMM and NBLMM is that NBGMM
uses a gamma distribution for the random effects while the NBLMM uses a
lognormal distribution. The PMM is the fastest among these models. Note
that the Poisson mixed model (PMM) should not be used to test a
cell-level predictor because it only estimates the subject-level
overdispersion. Here is an example of using the PMM to fit the example
data set.
re = nebula(sample_data$count,sample_data$sid,pred=df,offset=sample_data$offset,model='PMM',ncore=1)
#> Remove 0 genes having low expression.
#> Analyzing 10 genes with 30 subjects and 6176 cells.
logFC_(Intercept) | logFC_X1 | logFC_X2 | logFC_cccontrol | se_(Intercept) | se_X1 | se_X2 | se_cccontrol | p_(Intercept) | p_X1 | p_X2 | p_cccontrol | gene_id | gene |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
-1.903559 | -0.0155807 | -0.0976567 | 0.0511051 | 0.0661288 | 0.0329114 | 0.0655551 | 0.0642298 | 0 | 0.6359176 | 0.1363061 | 0.4262299 | 1 | A |
-2.047864 | -0.0032670 | -0.0536887 | -0.0189269 | 0.0644332 | 0.0355074 | 0.0635450 | 0.0694853 | 0 | 0.9266904 | 0.3981703 | 0.7853239 | 2 | B |
-2.032603 | 0.0179868 | 0.0009264 | -0.0505295 | 0.0908162 | 0.0345496 | 0.0932444 | 0.0676704 | 0 | 0.6026385 | 0.9920732 | 0.4552440 | 3 | C |
-2.009743 | -0.0055009 | -0.0278638 | 0.0782083 | 0.0573206 | 0.0350744 | 0.0574457 | 0.0686939 | 0 | 0.8753743 | 0.6276435 | 0.2549097 | 4 | D |
-1.980527 | 0.0106340 | -0.0248788 | 0.0312191 | 0.0644293 | 0.0343354 | 0.0621582 | 0.0671645 | 0 | 0.7567817 | 0.6889725 | 0.6420637 | 5 | E |
-1.950454 | 0.0160303 | -0.0134764 | -0.0345278 | 0.0778201 | 0.0333858 | 0.0738508 | 0.0650410 | 0 | 0.6311185 | 0.8552054 | 0.5955144 | 6 | F |
-1.970271 | -0.0026762 | 0.0750061 | -0.0063660 | 0.0645989 | 0.0341936 | 0.0615159 | 0.0668723 | 0 | 0.9376159 | 0.2227322 | 0.9241583 | 7 | G |
-1.964322 | 0.0141545 | -0.0610982 | -0.0578682 | 0.0809950 | 0.0336580 | 0.0800989 | 0.0656801 | 0 | 0.6740920 | 0.4455920 | 0.3782847 | 8 | H |
-2.074035 | -0.0178188 | -0.0436111 | 0.0259748 | 0.0597958 | 0.0362203 | 0.0587687 | 0.0707913 | 0 | 0.6227507 | 0.4580383 | 0.7136780 | 9 | I |
-2.046058 | 0.0307022 | 0.0227234 | -0.0246096 | 0.0714146 | 0.0354844 | 0.0702255 | 0.0691813 | 0 | 0.3869124 | 0.7462578 | 0.7220452 | 10 | J |
When testing subject-level variables, it should be kept in mind that the
actual sample size is the number of subjects, not the number of cells in
the data set. At least a moderate number of subjects (>30) are required
for testing a subject-level variable using nebula
simply because a
small number of subjects are not enough to accurately estimate the
subject-level overdispersion. As shown in the original article (He et
al. 2021), even 30 subjects lead to mild inflated type I errors in most
simulated scenarios. If the number of subjects is very small, methods
designed for small sample size (e.g., DESeq2, edgeR) should be used for
testing subject-level variables.
In addition, when the ratio between the number of subjects and the
number of subject-level variables is small (<10), it is recommended to
instead use a restricted maximum likelihood (REML) estimate, which is
provided in nebula
through the argument reml
. Please see (He et al.
2021) for more details about the formula of REML. This is because the
number of subject-level fixed-effects parameters should be much smaller
than the number of subjects in order to make the maximum likelihood
estimation (MLE) work properly. For example, if the data set has 50
subjects, it is a good practice to keep the number of subject-level
variables below 5 based on our simulation study. Increasing the number
of subject-level parameters will gradually inflate the type I error rate
due to an underestimated overdispersion. When these two numbers are at
the same magnitude, the MLE for the overdispersion will break down and
consequently, the NBMM can degenerate to a negative binomial model. In
contrast, REML takes into account the uncertainty of the estimated fixed
effects and controls the false positive rate even if many subject-level
covariates are included in the model. As shown in the following example,
one could simply specify reml=1
to use REML, which is supported only
for model='NBLMM'
in the current version.
re = nebula(sample_data$count,sample_data$sid,pred=df,offset=sample_data$offset,model='NBLMM',reml=1,ncore=1)
In some situations, a user may want to test a combination (contrast) of
the log(FC) or perform a global test for multiple variables or levels.
For example, a user may want to test whether the log(FC) of two
variables are the same. Here, we show how nebula
can be used for this
kind of analysis.
The first step is to tell nebula
to output the covariance matrix of
the estimated log(FC). This can be done by specifying covariance=TRUE
in nebula
. To save storage, the covariance returned by nebula
only
contains the elements in the lower triangular part including the
diagonal. Here is an example to recover the covariance matrix from the
output of nebula
.
df = model.matrix(~X1+X2+cc, data=sample_data$pred)
re_ln = nebula(sample_data$count,sample_data$sid,pred=df,offset=sample_data$offset,method='LN',covariance=TRUE,ncore=1)
#> Remove 0 genes having low expression.
#> Analyzing 10 genes with 30 subjects and 6176 cells.
cov= matrix(NA,4,4)
cov[lower.tri(cov,diag=T)] = as.numeric(re_ln$covariance[1,])
cov[upper.tri(cov)] = t(cov)[upper.tri(cov)]
cov
#> [,1] [,2] [,3] [,4]
#> [1,] 4.014261e-03 2.499051e-05 1.384999e-04 -5.197643e-05
#> [2,] 2.499051e-05 1.249382e-03 9.212341e-06 -1.167080e-05
#> [3,] 1.384999e-04 9.212341e-06 4.159507e-03 5.142249e-05
#> [4,] -5.197643e-05 -1.167080e-05 5.142249e-05 4.732936e-03
Note that if there are K variables, the covariance table in the output will have (K+1)K/2 columns. So, for a large K, substantial increase of computational intensity should be expected.
The second step is to build the contrast vector for your hypothesis. In
this example, we want to test whether the log(FC) of X1 and X2 are
equal for the first gene. This hypothesis leads to the contrast vector
(0 1 -1 0)
. Thus, the test can be performed using the following code.
df = model.matrix(~X1+X2+cc, data=sample_data$pred)
## the gene to test
gene_i = 1
## output covariance
re_ln = nebula(sample_data$count,sample_data$sid,pred=df,offset=sample_data$offset,method='LN',covariance=TRUE,ncore=1)
#> Remove 0 genes having low expression.
#> Analyzing 10 genes with 30 subjects and 6176 cells.
## recover the covariance matrix
cov= matrix(NA,4,4)
cov[lower.tri(cov,diag=T)] = as.numeric(re_ln$covariance[gene_i,])
cov[upper.tri(cov)] = t(cov)[upper.tri(cov)]
## build the contrast vector
contrast = c(0,1,-1,0)
## testing the hypothesis
eff = sum(contrast*re_ln$summary[gene_i,1:4])
p = pchisq(eff^2/(t(contrast)%*%cov%*%contrast),1,lower.tail=FALSE)
p
#> [,1]
#> [1,] 0.2692591
Pearson residuals are the distances between the raw count and its expected value standardized by its standard deviation. Pearson residuals obtained from fitting the NBMM can be used for normalization and downstream analyses. The marginal Pearson residuals are obtained by removing from the raw count the contribution from all fixed-effect variables included in the model. The conditional Pearson residuals further remove the subject-level random effects, which capture the contribution of all other potential subject-level variables that are not explicitly included in the model. Therefore, the conditional Pearson residuals are very useful in a situation where one needs to remove the subject-level batch effects from the normalized residuals for downstream analyses.
Both Pearson residuals can be easily extracted by using the nbresidual
function after successfully running the nebula
function. To extract
the marginal Pearson residuals, one provides in nbresidual
the object
returned by nebula
together with the same arguments including the
count matrix, id
, pred
and offset
used in running the nebula
function. Here is an example.
re = nebula(sample_data$count,sample_data$sid,pred=df,offset=sample_data$offset)
pres = nbresidual(re,count=sample_data$count,id=sample_data$sid,pred=df,offset=sample_data$offset)
The parameters count
, id
, pred
and offset
should be the same in
these two functions. Then, the marginal Pearson residuals are available
in the matrix pres$residuals
. The rows in pres$residuals
correspond
to the genes in the output of nebula
, and the columns are the cells in
count
.
To extract the conditional Pearson residuals, we need to first let
nebula
output subject-level random effects by setting output_re=TRUE
when running nebula
as shown below.
re = nebula(sample_data$count,sample_data$sid,pred=df,offset=sample_data$offset,output_re=TRUE)
The returned object will include an M by L matrix of the random
effects, where L is the number of subjects. In the current version,
this option does NOT support model="PMM"
. Then, the conditional
Pearson residuals can be extracted by running nbresidual
with
conditional=TRUE
.
pres = nbresidual(re,count=sample_data$count,id=sample_data$sid,pred=df,offset=sample_data$offset,conditional=TRUE)
Starting with version 1.4.0, nebula supports parallel computing to
accelerate tasks. To specify the number of logical cores (threads),
users can use the ncore
argument when running nebula
. By default,
nebula
uses two cores if more than two cores are available. However,
if the specified value for ncore
exceeds the number of available
cores, nebula will use available cores detected and issue a warning.
It’s important to note that the maximum number of available processors
on a computing cluster may be restricted by the job scheduler’s
configuration.
While parallel computing significantly improves computational time, users should monitor memory usage when exploiting multiple cores. Insufficient memory allocation to a new thread may cause the R session or job to be terminated by the operating system. In addition, if the number of cells is small, using too many cores might not improve or even reduce the efficiency because the overhead for creating new threads exceeds the speed gain.
He, Liang, Jose Davila-Velderrain, Tomokazu S. Sumida, David A. Hafler, Manolis Kellis, and Alexander M. Kulminski. 2021. “NEBULA Is a Fast Negative Binomial Mixed Model for Differential or Co-Expression Analysis of Large-Scale Multi-Subject Single-Cell Data.” Communications Biology, no. 629 (May). https://doi.org/10.1038/s42003-021-02146-6.
Lab, Satija. 2019. Panc8.SeuratData: Eight Pancreas Datasets Across Five Technologies.