Mutual prediction learning and mixed viewpoints for unsupervised-domain adaptation person re-identification on blockchain
The official repository for [Mutual prediction learning and mixed viewpoints for unsupervised-domain adaptation person re-identification on blockchai].
(we use /torch >=1.1 / 11G RTX2080Ti for training and evaluation.)
mkdir data
Download the person datasets Market-1501, MSMT17, DukeMTMC-reID, MSMT17-New ,Market1501-New,Duke-New.
Then unzip them and rename them under the directory like.
data
├── market1501
│ └── bounding_box_train_s1 ..(S1)
│ └── bounding_box_train ..
│ └── bounding_box_test ..
│ └── query ..
├── dukemtmcreid
│ └── bounding_box_train_s1 ..(S1)
│ └── bounding_box_train ..
│ └── bounding_box_test ..
│ └── query ..
└── MSMT17
│ └── modify ..(S2)
│ └── list_gallery.txt
│ └── list_query.txt
│ └── list_train.txt
│ └── list_val.txt
│ └── train ..
│ └── test ..
│ └── list_gallery.txt
│ └── list_query.txt
│ └── list_train.txt
│ └── list_val.txt
We utilize 1 RTX-2080Ti GPU for training.
python main.py --train_task 'duke_market' --s_camera_num 8 --t_camera_num 6 --pid_num 702 --steps 1033 --steps_domain 800 --base_learning_rate 0.0002 --m_2k_learn_rate 0.00012 --d_domain_learn_rate 0.0003
python main.py --train_task 'market_duke' --s_camera_num 6 --t_camera_num 8 --pid_num 751 --steps 809 --steps_domain 1000 --base_learning_rate 0.0002 --m_2k_learn_rate 0.0002 --d_domain_learn_rate 0.0002
python main.py --train_task 'market_msmt' --s_camera_num 6 --t_camera_num 15 --pid_num 751 --steps 809 --steps_domain 2000 --base_learning_rate 0.0002 --m_2k_learn_rate 0.0002 --d_domain_learn_rate 0.0002
python main.py --train_task 'msmt_market' --s_camera_num 15 --t_camera_num 6 --pid_num 1041 --steps 2039 --steps_domain 800 --base_learning_rate 0.0002 --m_2k_learn_rate 0.0002 --d_domain_learn_rate 0.0002
python main.py --train_task 'duke_msmt' --s_camera_num 8 --t_camera_num 15 --pid_num 702 --steps 1033 --steps_domain 2000 --base_learning_rate 0.0002 --m_2k_learn_rate 0.00012 --d_domain_learn_rate 0.0003
python main.py --train_task 'msmt_duke' --s_camera_num 15 --t_camera_num 8 --pid_num 1041 --steps 2039 --steps_domain 1000 --base_learning_rate 0.0002 --m_2k_learn_rate 0.0002 --d_domain_learn_rate 0.0002
python main.py --train_task 'market_duke' --s_camera_num 6 --t_camera_num 8 --pid_num 751 --steps 809 --steps_domain 300 --base_learning_rate 0.0002 --m_2k_learn_rate 0.0002 --d_domain_learn_rate 0.0002 --target_modify True
python main.py --train_task 'duke_market' --s_camera_num 8 --t_camera_num 6 --pid_num 702 --steps 1033 --steps_domain 200 --base_learning_rate 0.0002 --m_2k_learn_rate 0.00012 --d_domain_learn_rate 0.0003 --target_modify True
python main.py --train_task 'market_msmt' --s_camera_num 6 --t_camera_num 15 --pid_num 751 --steps 809 --steps_domain 900 --base_learning_rate 0.0002 --m_2k_learn_rate 0.0002 --d_domain_learn_rate 0.0002 --target_modify True
python main.py --train_task 'duke_msmt' --s_camera_num 8 --t_camera_num 15 --pid_num 702 --steps 1033 --steps_domain 900 --base_learning_rate 0.0002 --m_2k_learn_rate 0.00012 --d_domain_learn_rate 0.0003 --target_modify True
python test.py --train_task 'duke_market' --resume_test_model 'path'
python test.py --train_task 'duke_msmt' --resume_test_model 'path' --target_modify True
If you have any questions, please feel free to contact me.(shuangli936@gmail.com) .
Our code is based on light-reid .
@article{li2022mutual,
title={Mutual prediction learning and mixed viewpoints for unsupervised-domain adaptation person re-identification on blockchain},
author={Li, Shuang and Li, Fan and Wang, Kunpeng and Qi, Guanqiu and Li, Huafeng},
journal={Simulation Modelling Practice and Theory},
volume={119},
pages={102568},
year={2022},
publisher={Elsevier}
}