/LangSegment

It is a multi-lingual (97 languages) text content automatic recognition and segmentation tool. 强大的TTS多语言(97种语言)混合文本内容自动分词工具。

Primary LanguagePython

LangSegment

简介:它是一个强大的多语言(97种语言)的混合文本自动分词工具。[中/日/英/韩:已测试]
主要用途:“一口气” 让你的 TTS 语音合成项目 VITS 说出多国语言,多语种混合文本的分词推理,和预处理训练。
分词支持:中文/英文/日文/韩语/法语/越南语/俄语/泰语/

image

它基于 py3langid 的扩展实现(>=python3.6)。
LangSegment It is a multi-lingual (97 languages) text content automatic recognition and segmentation tool.
The main purposes are: front-end for various TTS (Text-to-Speech) synthesis projects, preprocessing of multilingual text mixing for both training and inference.

Implementation based on py3langid,See LICENSE file for more info.
https://github.com/adbar/py3langid

功能:将文章或句子里的例如(中/英/日/韩),按不同语言自动识别分词,使文本更适合AI处理。
本代码专为各种 TTS 项目的前端文本多语种混合标注区分,多语言混合训练和推理而编写。

最近更新:News

  • 版本:v0.3.3 fix (更新帮助见下文)。

  • 添加支持: "zh"中文(数字拼音pinyin),保留多音字(音素)指定。

  • 添加支持: "ru"俄语Russian / "th"泰语Thai。

  • 添加支持: "fr"法语French / "vi"越南语Vietnamese。

  • 语言优先级,置信度评分和阀值。

  • 优化字符处理。fix: LangSegment.setfilters

  • 更细致的处理,中日英韩,分词更精准!

  • 多语言过滤组功能(默认:中/英/日/韩)!帮您自动清理不需要的语言内容。

  • 添加 WebUI 可视化界面,运行 app.py 即可快捷体验(如图所示)。

  • 点击在线体验,感谢 huggingface 提供服务支持:

image

# Gradio demo:To use our gradio demo locally:
# 运行脚本,打开浏览器 gradio webui 界面,开始快速体验。(gradio==3.50.2)
python app.py  

完全可控:支持

  • (1)自动分词:“韩语中的오빠读什么呢?あなたの体育の先生は誰ですか? 此次带来了四款iPhone 15系列机型”
  • (2)手动分词:“你的名字叫<ja>佐々木?<ja>吗?”

语言标签:支持

分词语言标签:它和html类似,它需要成对出现 <zh>内容<zh> 或者 <zh>内容</zh>。
本处理结果主要针对(中文=zh , 日文=ja , 英文=en , 韩语=ko), 实际上可支持多达 97 种不同的语言混合处理。

安装方法:Install (推荐使用官方源)

# 首次安装:官方源(推荐)
pip3 install LangSegment -i  https://pypi.org/simple
# 后续版本升级或更新:
pip3 install LangSegment -i  https://pypi.org/simple --upgrade

# 或者,国内镜像(国内镜像同步慢几天,可能会导致您无法极时获得最新版本!!!):  
# pip3 install LangSegment -i https://pypi.mirrors.ustc.edu.cn/simple

使用示例:Example Input

示例中的句子,同时包含中日英韩4种语言,接下来将对它们按不同语种进行分词,以方便各种TTS项目进行语音合成。

    # pip3 install LangSegment -i  https://pypi.org/simple
    import LangSegment

    # input text example 示例:
    text = "你的名字叫<ja>佐々木?<ja>吗?韩语中的오빠读什么呢?あなたの体育の先生は\
    誰ですか? 此次发布会带来了四款iPhone 15系列机型\
    和三款Apple Watch等一系列新品,这次的iPad Air采用了LCD屏幕" 

    # example
    langlist = LangSegment.getTexts(text)

    # output list : {'lang': 'zh', 'text': '...'}
    print("=================================")
    for line in langlist:
        print(line)
    print("=================================")

处理结果:Example Output

    # output 输出列表行:lang=语言,text=内容
    # ===========================================================================
    # {'lang': 'zh', 'text': '你的名字叫'}
    # {'lang': 'ja', 'text': '佐々木?'}
    # {'lang': 'zh', 'text': '吗?韩语中的'}
    # {'lang': 'ko', 'text': '오빠'}
    # {'lang': 'zh', 'text': '读什么呢?'}
    # {'lang': 'ja', 'text': 'あなたの体育の先生は誰ですか?'}
    # {'lang': 'zh', 'text': ' 此次发布会带来了四款'}
    # {'lang': 'en', 'text': 'i Phone'}
    # {'lang': 'zh', 'text': ' 15系列机型和三款'}
    # {'lang': 'en', 'text': 'Apple Watch'}
    # {'lang': 'zh', 'text': '等一系列新品,这次的'}
    # {'lang': 'en', 'text': 'i Pad Air'}
    # {'lang': 'zh', 'text': '采用了'}
    # {'lang': 'en', 'text': 'L C D'}
    # {'lang': 'zh', 'text': '屏幕'}
    # ===========================================================================
    # 其中英文缩写字母如“LCD”,英文标准发音为“L-C-D”,
    # 而在语音合成TTS项目中,一般用空格隔开字母来单独发音:“L C D”

英文拼读:支持

TTS语音合成英文字母大小写拼读规则:
(1需要单个字母发音就大写比如USAUSBChatGPTLCDGPUCEO。
(2其它情况正常拼读就按正常拼写比如NvidiaCuda 或者全小写nvidiacuda

拼音保留:支持(多音字)

版本支持:>= 0.3.2
常见需求:直接修改 TTS 的汉字读音,保留拼音输入。

# 开启汉语拼音保留,(TTS标准:数字拼音格式),默认关闭。  
LangSegment.setKeepPinyin(True)  

# 汉字拼音指定示例:以下句子,括号中的拼音,均识别为中文。
text = "这个字的读音是角(jue2)色,而不是角(jiao3)色"  

分词纠错:很重要!

综上所述,“自动分词”已经极大的提高了我们的工作效率,但还是建议您对分词结果进行人工校对。
特别是中文与日文,存在大量汉字互用,这对自动分词是极具挑战性的,“分词纠错” 解决方案如下:

  • (1)自动分词纠错:在中文与日文句子之间,打上句号。来辅助分词(自动上下文分词)。
  • (2)手动分词纠错:您可手动添加语言标签<ja>,<ko>,<zh>,<en>等来辅助进行强制分词。

以下是语言标签分词详细示例:

    # 手动分词标签的应用示例,例如针对中日汉字有重叠,而需要在 TTS 中混合发音的情况:
    # 分词标签内的文本将识别成日文ja内容,也可以写成<ja>内容</ja>
    text = "你的名字叫<ja>佐々木?<ja>"  
    # 或者:
    text = "你的名字叫<ja>佐々木?</ja>"  
    # 以上均能正确输出:
    # 处理成中文-- {'lang': 'zh', 'text': '你的名字叫'}
    # 处理成日文-- {'lang': 'ja', 'text': '佐々木?'}

自动分词能力目前主要针对中文(zh)/日文(ja)/英文(en)/韩文(ko),进行了特别优化。
它特别适合各种 TTS 前端文本多语种内容的混合分词(自动/手动),训练和推理使用。

    # 手动分词标签规范:<语言标签>文本内容</语言标签>
    # ===========================================================================
    # 如需手动标注,标签需要成对出现,如:“<ja>佐々木<ja>”  或者  “<ja>佐々木</ja>”
    # 错误示范:“你的名字叫<ja>佐々木。” 此句子中出现的单个<ja>标签将被忽略,不会处理。
    # ===========================================================================

语言过滤:支持

版本支持:>=0.2.0
语言过滤组功能, 可以指定保留语言。不在过滤组中的语言将被清除。您可随心搭配TTS语音合成所支持的语言。

# Set language filters
# 设置语言过滤功能,未指定的语言将被清除,使它完全适配您的TTS项目。
LangSegment.setfilters(["zh", "en", "ja", "ko"]) # 标准写法
# 或者写成:
# LangSegment.setfilters(["zh_en_ja_ko"]) # 写法1,过滤效果相同
# LangSegment.setfilters(["zh-en-ja-ko"]) # 写法2,过滤效果相同
# 获取过滤器:
# LangSegment.getfilters()

# 参数组合说明,以下是部份场景示例:
# ["zh"]        # 按中文识别
# ["en"]        # 按英文识别
# ["ja"]        # 按日文识别
# ["ko"]        # 按韩文识别
# ["zh_ja"]     # 中日混合识别
# ["zh_en"]     # 中英混合识别
# ["zh_ko"]     # 中韩混合识别
# ["ja_en"]     # 日英混合识别
# ["zh_ko_en"]  # 中韩英混合识别
# 以上是示例,您可根据自己的TTS项目进行自由组合。

语言优先级:支持(纯数字输入示例)

版本支持:>=0.2.1
当我们在鉴别纯数字时,比如“123456”,全球通用。如果没有提供上下文,将无法区分归属(默认en)。
这时候,您只需调整语言优先级。就能准确识别。相关示例如下:

# 仅输入独立纯数字:所有国家通用,因为没有提供上下文,所以无法区分语言归属
print(LangSegment.getTexts("123456789")) # 国际纯数字,默认输出:英文=en

# 调整过滤语言优先级,中文优先,数字按中文优先识别
LangSegment.setfilters(["zh","ja"])
print(LangSegment.getTexts("123456789")) # 识别输出:中文=zh

# 调整过滤语言优先级,日语优先,数字按日语优先识别
LangSegment.setfilters(["ja","zh"])
print(LangSegment.getTexts("123456789")) # 识别输出:日文=ja

# 调整过滤语言优先级,韩语优先,数字按韩语优先识别
LangSegment.setfilters(["ko","zh"])
print(LangSegment.getTexts("123456789")) # 识别输出:韩文=ko  

# 识别输出:中文,(因为提供了上下文,汉字“编号:”)
LangSegment.setfilters(["ko","zh","en","ja"])
print(LangSegment.getTexts("编号:123456789"))  # 提供上下文,识别输出:中文=zh  
print(LangSegment.getTexts("Number:123456789"))  # 提供上下文,识别输出:英文=en  
print(LangSegment.getTexts("번호:123456789"))  # 提供上下文,识别输出:韩文=ko  

优先级与置信度:特殊示例

版本支持:>=0.2.1
语言优先级除了对输入的纯数字外,它对中文与日文也特别有用,以下是使用示例:

  • 示例汉字词:“番号”,由于在中文和日语,两者使用几乎完全一样,在中日混合模式下。
# 在中日混合下,默认情况为中文优先。
LangSegment.setfilters(["zh","ja","en","ko"])
# 默认处理:
print(LangSegment.getTexts("番号: 123456789"))  
# [{'lang': 'zh', 'text': '番号: 123456789 ', 'score': 0.87188566}]
# 默认识别:中文=zh ,识别的参考置信度是:0.87
  • 而此时,在中日混合模式下,我们希望它识别成:日语=ja。
# 只需按如下调整过滤器的语言优先级。让 ja 优先于 zh 之前。
LangSegment.setfilters(["ja","zh","en","ko"])
# 再次处理:
print(LangSegment.getTexts("番号: 123456789"))  
# [{'lang': 'ja', 'text': '番号: 123456789 ', 'score': 0.87188566}]
# 阀值的精准控制下,它被优先识别为我们希望的结果:日文=ja  

# 您还可以添加语言标签:精准控制
print(LangSegment.getTexts("<ja>番号: 123456789</ja>")) 
# 添加语言标签,正确输出:日文=ja

预览新增:法语(French)/越南语(Vietnamese)/俄语(Russian)/泰语(Thai)

版本支持:>=0.2.2 (法语(French)/越南语(Vietnamese))
版本支持:>=0.2.3 (俄语(Russian)/泰语(Thai))
法语和越南语,您只需在语言过滤器中添加,即可配合分词标签使用。

# 自动分词启用设置:法语="fr" , 越南语="vi", "ru"俄语=Russian, "th"泰语=Thai
LangSegment.setfilters(["fr", "vi" , "zh", "ja", "ko", "en"])

# 可以随意搭配,比如您的TTS只需(越南语/中文),则仅需保留两个语言。
# LangSegment.setfilters(["vi" , "zh"])

# 对应的(法语fr和越南语vi)手动分词语言标签:
# <fr>Français</fr>、<vi>Tiếng Việt</vi>

每个语种它们对应的语言分词标签: (ISO 639-1 codes given):

  • <zh>:中文 = Chinese
  • <en>:英语 = English
  • <ja>:日语 = Japanese
  • <ko>:韩语 = Korean
  • <fr>:法语 = French
  • <vi>:越南语 = Vietnamese
  • <ru>:俄语 = Russian
  • <th>:泰语 = Thai
  • 更多其它97个语种标签,在下方完整列表已经列出。

总结说明:

它经过了高达 97 种语言的预训练,相信它绝对能满足您的 TTS 语音合成项目所需。
comes pre-trained on 97 languages (ISO 639-1 codes given):

af, am, an, ar, as, az, be, bg, bn, br, bs, ca, cs, cy, da, de, dz, el, en, eo, es, et, eu, fa, fi, fo, fr, ga, gl, gu, he, hi, hr, ht, hu, hy, id, is, it, ja, jv, ka, kk, km, kn, ko, ku, ky, la, lb, lo, lt, lv, mg, mk, ml, mn, mr, ms, mt, nb, ne, nl, nn, no, oc, or, pa, pl, ps, pt, qu, ro, ru, rw, se, si, sk, sl, sq, sr, sv, sw, ta, te, th, tl, tr, ug, uk, ur, vi, vo, wa, xh, zh, zu



备注:多语种混合文本转语音合成(TTS),中/日/英/韩/已完成测试。
其它语种未作具体测试,如有Bug和优化建议,欢迎提出或指正,感谢~。
Note: The speech synthesis test content is currently mainly for four categories: Chinese, Japanese, English and Korean.
Other languages have not been specifically tested. If there are any bugs or optimization suggestions, please feel free to raise them or correct them. Thank you~
Special thanks to the following projects: py3langid