This repo is for source code of paper "TDAR: Topology-Driven Attribute Recovery for Attribute-missing Graph Learning". This code is referenced from SVGA and SAT, thanks to the author's contribution.
python==3.11.4
scipy==1.10.1
torch==2.0.1
torch-geometric==2.3.1
numpy==1.24.3
scikit_learn==1.3.0
GPU: GeForce RTX 4090
The data obtained from link is approximate.
You can use the following command to run our model.
python main.py --data cora --lr 1e-3 --dropout 0.8 --layers 2 --epochs 2000 --conv lin
python main.py --data citeseer --lr 1e-3 --dropout 0.8 --layers 2 --epochs 2000 --conv lin
python main.py --data amac --lr 1e-2 --dropout 0.2 --layers 1 --epochs 400 --conv gcn
python main.py --data amap --lr 1e-2 --dropout 0.2 --layers 1 --epochs 400 --conv gcn
Note: It is undoubtedly extremely difficult to achieve the best results for all downstream tasks (feature reconstruction, node classification, node clustering) with unified hyperparameters (
This code has not been thoroughly verified and is only for learning and communication purposes. Please feel free to raise any questions or suggest better solutions by contacting limengran1998@163.com.