llm-datasets is a collection of datasets for language model training including scripts for downloading, preprocesssing, and sampling.
The documentation is available here.
Install the llm-datasets
package with pip:
pip install llm-datasets
In order to keep the package minimal by default, llm-datasets
comes with optional dependencies useful for some use cases.
For example, if you want to have the text extraction for all available datasets, run:
pip install llm-datasets[datasets]
The framework provides the llm-datasets
commandline interface (CLI) that allows running different processing and utility functions:
usage: llm-datasets <command> [<args>]
positional arguments:
{chunkify,collect_metrics,compose,convert_parquet_to_jsonl,extract_text,hf_upload,print_stats,shuffle,train_tokenizer,render_docs,exact_dedup}
llm-datasets command helpers
chunkify Split the individual datasets into equally-sized file chunks (based
on bytes or rows)
collect_metrics Collect metrics (token count etc.) from extracted texts
compose Compose the final train/validation set based on the individual
datasets
convert_parquet_to_jsonl
Convert Parquet files to JSONL
extract_text Extract text from raw datasets
hf_upload Upload files or directories to Huggingface Hub.
print_stats Print dataset statistics as CSV, Markdown, ...
shuffle Shuffle the individual datasets on the file-chunk level (no global
shuffle!)
train_tokenizer Train a tokenizer (only: sentencepiece supproted)
render_docs Render files for documents (overview of datasets, statistics, plots)
exact_dedup Exact deduplication using TLSH local-sensitive hashing
To download and extract the plain-text of one or more datasets, run the following command:
llm-datasets extract_text $DATASET_ID $OUTPUT_DIR
By default, output is saved as JSONL files. To change the output format, you can use the --output_format
argument as below:
llm-datasets extract_text $DATASET_ID $OUTPUT_DIR --output_format parquet --output_compression zstd
A list or table with all available datasets can be print with the follow command:
llm-datasets print_stats --print_output md
Language | Tokens |
---|---|
bg | 31 B |
ca | 6 B |
code | 212 B |
cs | 42 B |
da | 13 B |
de | 160 B |
el | 63 B |
en | 1 T |
es | 101 B |
et | 9 B |
eu | 1 B |
fi | 19 B |
fr | 84 B |
ga | 274 M |
gl | 231 M |
hr | 11 B |
hu | 52 B |
it | 61 B |
lt | 7 B |
lv | 5 B |
mt | 4 B |
nl | 44 B |
nn | 76 M |
no | 13 B |
pl | 45 B |
pt | 46 B |
ro | 18 B |
sh | 184 M |
sk | 32 B |
sl | 13 B |
sr | 11 B |
sv | 19 B |
uk | 56 B |
Source | Tokens |
---|---|
curlicat | 963 M |
macocu | 74 B |
redpajama | 44 B |
wura | N/A |
wikihow | 99 M |
pes2o | 57 B |
proof_pile | 12 B |
pile_of_law | 111 B |
math_amps | 7 B |
edgarcorpus | N/A |
bulgarian_news | 640 M |
bulnc | 4 B |
openlegaldata | 7 B |
dewac | 3 B |
ga_bilingual_legistation | 4 k |
ga_universal_dependencies | 40 k |
hrwac | 2 B |
styria_news | 432 M |
croatian_news_engri | 1 B |
itwac | 3 B |
korpus_malti | 816 M |
sonar | 746 M |
cc_gigafida | 260 M |
academic_slovene_kas | 3 B |
slwac_web | 3 B |
sk_court_decisions | 24 B |
sk_laws | 105 M |
syn_v9 | 13 B |
cs_en_parallel | 473 M |
danish_gigaword | 2 B |
danewsroom | 835 M |
dk_clarin | 80 M |
cabernet | 599 M |
norwegian_cc | 11 B |
pl_nkjp | 3 M |
pl_parliamentary_corpus | 1 B |
parlamento_pt | 732 M |
brwac | 4 B |
seimas_lt_en | 12 k |
state_related_latvian_web | 52 k |
greek_legal_code | 80 M |
greek_web_corpus | 11 B |
estonian_reference_corpus | 481 M |
enc2021 | 3 B |
ekspress | 723 M |
euscrawl | 831 M |
spanish_legal | 1 B |
ylenews | 286 M |
sv_gigaword | 528 M |
srpkor | 866 M |
marcell_legislative_subcorpus_v2 | 1 B |
uk_laws | 2 B |
eurlex | 41 B |
legal_mc4 | 28 B |
wiki | 21 B |
wikibooks | 313 M |
wikiquote | 247 M |
wikinews | 90 M |
wikisource | 2 B |
wikivoyage | 119 M |
colossal_oscar | 2 T |
starcoder | 212 B |
We provide a Web-based application through streamlit to browse all datasets and their contained text content. To start the app, first clone this repository, install dependencies, and run the following command:
# clone is needed since streamlit does not support apps from modules yet
git clone https://github.com/malteos/llm-datasets.git
streamlit run src/lm_datasets/viewer/app.py -- \
--raw_datasets_dir=$RAW_DATASETS_DIR \
--output_dir=$PROCESSED_DATASET_DIR
To setup, your local development environment we recommend conda and cloning the repository. The repository also includes settings and launch scripts for VSCode.
git clone git@github.com:malteos/llm-datasets.git
cd llm-datasets
conda create -n llm-datasets python=3.10
conda activate llm-datasets
pip install -r requirements.txt
Alternatively, you can install the Python package directly from the dev branch:
pip install git+https://github.com/malteos/llm-datasets.git@dev
This repository uses git hooks to validate code quality and formatting.
pre-commit install
git config --bool flake8.strict true # Makes the commit fail if flake8 reports an error
To run the hooks:
pre-commit run --all-files
The tests can be executed with:
pytest --doctest-modules --cov-report term --cov=llm_datasets
The work on the llm-datasets software is partially funded by the German Federal Ministry for Economic Affairs and Climate Action (BMWK) through the project OpenGPT-X (project no. 68GX21007D).
Apache 2.0
(Please note that the actual datasets are released with different licenses)