/QVI

Implementation of "Quadratic video interpolation", NeurIPS 2019.

Primary LanguagePython

Quadratic video interpolation

Implementation of "Quadratic video interpolation", NeurIPS 2019.

Paper, Project

Packages

The following pakages are required to run the code:

  • python==3.8
  • pytorch==1.5.1
  • cudatoolkit==10.1
  • torchvision==0.6.1
  • cupy==8.6.0
  • tensorboardX
  • opencv-python
  • easydict

Video

IMAGE ALT TEXT HERE

Demo

seq1
--00000.png 
--00001.png
--... 
seq2
--00000.png 
--00001.png
--... 
  • Then run the demo:
python demo.py configs/test_config.py

The output will be in "outputs/example". Note that all settings are in config files under the folder "./configs".

Train

  • Download the QVI-960 dataset for training and put it in the folder "datasets"
  • Download the validation data which is a subset of the Adobe-240 dataset, and put it in the folder "datasets"
  • Then run the training code:
python train.py configs/train_config.py

Test

More datasets for evaluation:

You can use "datas/Sequence.py" to conveniently load the test datasets.

   

Please consider citing this paper if you find the code and data useful in your research:

@inproceedings{qvi_nips19,
	title={Quadratic video interpolation},
	author={Xiangyu Xu and Li Siyao and Wenxiu Sun and Qian Yin and Ming-Hsuan Yang},
	booktitle = {NeurIPS},
	year={2019}
}