/litedict

SQLite as a Python dictionary

Primary LanguageJupyter NotebookMIT LicenseMIT

litedict

Dictionary implemented on top of SQLite

Why?

You can use this to implement a persistent dictionary. It also uses some SQLite syntax to enable getting keys using pattern matching (see examples).

Installation

pip install litedict

Alternatives

  • RaRe-Technologies/sqlitedict: This library uses a separate writing thread. Modern versions of SQLite are thread safe by default (serialized), so a separate writing thread is not strictly needed. It can be helpful to avoid DB locks, but it also adds extra complexity. That implementation is also missing some performance optimizations that are present in this repository.

Examples

The examples are taken from the tests in tests.ipynb

from litedict import SQLDict

TEST_1 = "key_test_1"
TEST_2 = "key_test_2"

Basic functionality

d = SQLDict(":memory:")

d[TEST_1] = "asdfoobar"

assert d[TEST_1] == "asdfoobar"

del d[TEST_1]

assert d.get(TEST_1, None) is None

# execute multiple instructions inside a transaction
with d.transaction():
    d["asd"] = "efg"
    d["foo"] = "bar"

Glob matching

d[TEST_1] = "asdfoobar"

d[TEST_2] = "foobarasd"

d["key_testx_3"] = "barasdfoo"

assert d.glob("key_test*") == ["asdfoobar", "foobarasd", "barasdfoo"]

assert d.glob("key_test_?") == ["asdfoobar", "foobarasd"]

assert d.glob("key_tes[tx]*") == ["asdfoobar", "foobarasd", "barasdfoo"]

Numbers

d[TEST_1] = 1

d[TEST_2] = 2

assert d[TEST_1] + d[TEST_2] == 3

Benchmarks

from string import ascii_lowercase, printable
from random import choice
import random


def random_string(string_length=10, fuzz=False, space=False):
    """Generate a random string of fixed length """
    letters = ascii_lowercase
    letters = letters + " " if space else letters
    if fuzz:
        letters = printable
    return "".join(choice(letters) for i in range(string_length))
import gc

import pickle

import json

Pickle

d = SQLDict(
    ":memory:",
    encoder=lambda x: pickle.dumps(x).hex(),
    decoder=lambda x: pickle.loads(bytes.fromhex(x)),
)

gc.collect()

# %%timeit -n20000 -r10

d[random_string(8)] = random_string(50)

d.get(random_string(8), None)

# 69.2 µs ± 4.84 µs per loop (mean ± std. dev. of 10 runs, 20000 loops each)

Noop

d = SQLDict(
    ":memory:",
    encoder=lambda x: x,
    decoder=lambda x: x,
)

gc.collect()

# %%timeit -n20000 -r10

d[random_string(8)] = random_string(50)

d.get(random_string(8), None)

# 66.8 µs ± 2.41 µs per loop (mean ± std. dev. of 10 runs, 20000 loops each)

JSON

d = SQLDict(
    ":memory:",
    encoder=lambda x: json.dumps(x),
    decoder=lambda x: json.loads(x),
)

gc.collect()

# %%timeit -n20000 -r10

d[random_string(8)] = random_string(50)

d.get(random_string(8), None)

# 68.6 µs ± 3.07 µs per loop (mean ± std. dev. of 10 runs, 20000 loops each)

Pickle Python obj

d = SQLDict(
    ":memory:",
    encoder=lambda x: pickle.dumps(x).hex(),
    decoder=lambda x: pickle.loads(bytes.fromhex(x)),
)

gc.collect()

class C:
    def __init__(self, x):
        self.x = x

    def pp(self):
        return x

    def f(self):
        def _f(y):
            return y * self.x ** 2

        return _f

# %%timeit -n20000 -r10

d[random_string(8)] = C(random.randint(1, 200))

d.get(random_string(8), None)

# 41.1 µs ± 2.75 µs per loop (mean ± std. dev. of 10 runs, 20000 loops each)

Dictionary

d = {}

gc.collect()

# %%timeit -n20000 -r10

d[random_string(8)] = random_string(50)

d.get(random_string(8), None)

# 53.1 µs ± 4.42 µs per loop (mean ± std. dev. of 10 runs, 20000 loops each)

Changelog

  • 0.3
    • Add transactions as part of the dictionary

Meta

Ricardo Ander-Egg Aguilar – @ricardoanderegg

Distributed under the MIT license. See LICENSE for more information.

Contributing

The only hard rules for the project are:

  • No extra dependencies allowed
  • No extra files, everything must be inside the main module's .py file.
  • Tests must be inside the tests.ipynb notebook.