Low-Light

Low light & Unpair training

Traditional

  • BIMEF(北大深研院):A Bio-Inspired Multi-Exposure Fusion Framework for Low-light Image Enhancement Project

  • Ying:A New Image Contrast Enhancement Algorithm Using Exposure Fusion Framework Project

  • LIME:Low-light IMage Enhancement via Illumination Map Estimation Project

  • NPE:Naturalness Preserved Enhancement Algorithm for Non-Uniform Illumination Images Project

  • SRIE:A weighted variational model for simultaneous reflectance and illumination estimation Project

  • MF:A Fusion-based Enhancing Method for Weakly Illuminated Images Projetc

Deep Learning

  • Deep Retinex Decomposition for Low Light Enhancement (BMVC18) Paper

  • MBLLEN: Low Light Image/Video Enhancement using CNNs (BMVC18) Paper

  • Learning to see in the dark (CVPR18) Paper Code

Unpair learning

  • Deep Photo Enhancer (CVPR18) Paper

  • CycleGAN : Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks (CVPR18) Paper Code

  • AugCGAN: Augmented CycleGAN Paper

  • WISPE: Weakly Supervised Photo Enhancer for Digital Cameras (CVPR18) Paper

Denoise

  • Image Blind Denoising With Generative Adversarial Network Based Noise Modeling (CVPR18) Paper

Dataset

  • NEXET vehicle dataset

    • link
    • quantity: Training 50K, Testing 41K
    • resolution: 1280x720
    • ratio: Day - Night (about 50% each)
    • scene: road, car
    Night Day
  • KAIST dataset

    • link
    • quantity: Training 50K, Testing 45K
    • ratio: Day - Night (about 60% - 40%)
    • resolution: 640x512
    • feature: with extra thermal annotation
    • scene: road, campus, downtown
    Night Thermal Day
  • Adobe 5K

    • link
    • quantity: 5K
    • ratio: Day(100%)
    • resolution: 4000x2000
    • feature: high resolution, high quality day time pictures
    Day Day
  • Exclusively Dark Image Dataset

    • link
    • quantity: 7.3k
    • ratio: Night(100%)
    • feature: low light
    • scene: indoor, outdoor