/face-parsing

face pasring demo

Primary LanguagePython

Face parsing

数据集

采用公开数据集 Helen

包含 11类标签: hair,eyebrows, eyes, nose, lips, in mouth, skin and background.

包含 194个人脸关键点,training: 2000 val: 330

将训练集做随机反转、旋转、剪切进行数据扩充,training: 10146 val: 330

网络搭建

以UNet为基础网络框架,将编码器部分改为resnet18和mobilenet ,使用在imagenet上的预训练模型,在解码器部分添加attention gate,训练准确率有提升。

overall acc表示11个类别的平均准确率

Model Overall acc(Tr) Overall acc(val) mIOU (tr) mIOU (val) Params (M)
UNet 0.9292 0.9033 0.6142 0.5315 118.49
Resnet18 0.9679 0.9274 0.7885 0.6123 69.94
Resnet18+ImN 0.9697 0.9296 0.8016 0.6402 69.94
mobile 0.9466 0.9248 0.6787 0.6177 17.17
mobile+ImN 0.9689 0.9334 0.7976 0.6969 17.17

ImN: initializing the network from the weights pretrained on ImageNet dataset.

UNet (mobilenet encoder + ImN) per class acc

classname background face left eyebrow right eyebrow left eye right eye nose upper lip inner mouth lower lip hair
acc 0.962 0.932 0.727 0.737 0.800 0.783 0.935 0.751 0.803 0.812 0.790
miou 0.930 0.875 0.570 0.559 0.589 0.615 0.849 0.596 0.598 0.675 0.663

训练结果