- ⚡⚡ Super lightweight: The number of model parameters is 267,867 (< LSTR's 765,787).
- ⚡⚡ Super low complexity: The number of MACs (1 MAC = 2 FLOP) is only 486.617M (< LSTR's 574.280M).
- 😎 Learning structures with large curvatures without expensive, dense, and precise human annotations (predicting curved lanes better than LSTR).
The LLAMAS dataset paper defined and required lane categories when evaluating algorithms. l0 means the closest left lane to the host-vehicle, r0 means the closest right lane (likewise for l1 and r1).
In these demo videos, no tracking module is used.
The LI is trained without the proposed curvature-aware learning.
The pretrained models are stored in LICAZoos/
- Linux ubuntu 16.04
- GeForce RTX 3090
- Python 3.8.5
- CUDA 11.1
Create virtualenv environment
python3 -m venv lica
Activate it
source lica/bin/activate
Then install dependencies
pip install torch==1.8.1+cu111 torchvision==0.9.1+cu111 torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html
pip install -r requirements.txt
Download and extract TuSimple, and LLAMAS.
We expect the directory structure to be the following:
lica/
LICA/
LICA/
LICAZoos/
TuSimple/
LaneDetection/
clips/
label_data_0313.json
label_data_0531.json
label_data_0601.json
test_label.json
LLAMAS/
color_images/
labels/
python test.py LICA_TR2_TUSIMPLE --testiter 500000
python test.py LICA_TR6_TUSIMPLE --testiter 500000
python test.py LICA_TR2_LLAMAS --testiter 500000 --split validation
Corresponding codes will be released after acceptance.