embedding.py
is for split the text and then convert it to embedding format, store it in vector databaseCustomLLM.py
is load the LLM for langchain useRAG.py
--> RAG framework (called the CustomLLM)Frontend.py
---> frontend webside to load the model and interact
check the data folder readme
- you should download the llama.cpp
- get the gguf model
- check the load_model folder readme