/PytorchExamples

Simple pytorch-based model training examples

Primary LanguagePythonApache License 2.0Apache-2.0

Pytorch Examples

Introduction

We provide a simple pytorch-based bert classification example with well-formed structure. You can simply build and run your fine-tuning task with tiny modification of the code.

Requirements

conda create -n torch_env python=3.9 pandas tqdm scikit-learn -y
conda activate torch_env
conda install pytorch cudatoolkit=11.3.1 -y
pip install transformers wandb

Train

  1. Download transformers' pretrained model files (pytorch_model.bin, config.json, vocab.txt ...) and put them in one dir, eg. pretrained
  2. Customize a dataset in src/datasets.py. We provide IMDB and SNLI dataset as demos. Basically, for sent /sent-pair classification task, the only thing you need to do is to inherit SeqCLSDataset class and implement read_line / read_example according to your data format.
  3. Create labelspace file containing all labels, sep by line break
  4. Edit scripts/train.sh
  5. (optional) --use_wandb and set wandb_key to enable logging with wandb.ai
  6. Run it!
bash scripts/train.sh