This repository is the official implementation of our WWW'2021 paper "Role-Aware Modeling for N-ary Relational Knowledge Bases".
To install requirements:
python 3.7.4
pytorch 1.1
To train (and evaluate) the model in the paper, run this command:
python main.py --dataset FB-AUTO --num_iterations 200 --batch_size 64 --lr 0.005 --dr 0.995 --K 10 --rdim 50 --m 2 --drop_role 0.2 --drop_ent 0.4 --eval_step 1 --valid_patience 10 -ary 2 -ary 4 -ary 5
📋 The ary append for WikiPeople is
-ary 2 -ary 3 -ary 4 -ary 5 -ary 6 -ary 7 -ary 8 -ary 9
📋 The ary append for JF17K is
-ary 2 -ary 3 -ary 4 -ary 5 -ary 6
📋 The ary append for WN18/FB15k is
-ary 2
Evaluation interval is determined by the parameter "eval_step"
Dataset | d | K | lr | dr | drop_role | drop_ent | batch_size |
---|---|---|---|---|---|---|---|
WikiPeople | 25 | 10 | 0.003 | 0.995 | 0.0 | 0.2 | 64 |
JF17K | 50 | 10 | 0.005 | 0.995 | 0.2 | 0.4 | 64 |
FB-AUTO | 50 | 10 | 0.005 | 0.995 | 0.2 | 0.4 | 64 |
WN18 | 50 | 10 | 0.002 | 0.995 | 0.0 | 0.4 | 128 |
FB15k | 100 | 50 | 0.001 | 0.99 | 0.2 | 0.0 | 128 |
Our model achieves the following performance on WikiPeople, JF17K, FB-AUTO, WN18, and FB15k.
Dataset | MRR | Hits@10 | Hits@1 |
---|---|---|---|
WikiPeople | 0.380 | 0.541 | 0.278 |
JF17K | 0.539 | 0.690 | 0.463 |
FB-AUTO | 0.830 | 0.876 | 0.803 |
WN18 | 0.947 | 0.952 | 0.943 |
FB15k | 0.803 | 0.882 | 0.756 |
@inproceddings{liu2021ram,
title = {Role-Aware Modeling for N-ary Relational Knowledge Bases},
author = {Liu, Yu and Yao, Quanming and Li, Yong},
booktitle = {The World Wide Web Conference},
year = {2021},
}