本仓库用于存放《自然语言处理:基于预训练模型的方法》(作者:车万翔、郭江、崔一鸣)一书各章节的示例代码。
- Python: 3.8.5
- PyTorch: 1.8.0
- Transformers: 4.9.0
- NLTK: 3.5
- LTP: 4.0
- 书中3.4.3节
convert_t2s.py
:
f_in = open(sys.argv[0], "r")
修正为
f_in = open(sys.argv[1], "r")
- 书中3.4.3节
wikidata_cleaning.py
:
f_in = open(sys.argv[0], 'r')
修正为
f_in = open(sys.argv[1], 'r')
此外,为了兼容Python 3.7以上版本,将remove_control_chars
函数修改为:
def remove_control_chars(in_str):
control_chars = ''.join(map(chr, list(range(0, 32)) + list(range(127, 160))))
control_chars = re.compile('[%s]' % re.escape(control_chars))
return control_chars.sub('', in_str)
- 书中4.6.1节
Vocab
类的__init__
与build
方法有误,修正为:
class Vocab:
def __init__(self, tokens=None):
self.idx_to_token = list()
self.token_to_idx = dict()
if tokens is not None:
if "<unk>" not in tokens:
tokens = tokens + ["<unk>"]
for token in tokens:
self.idx_to_token.append(token)
self.token_to_idx[token] = len(self.idx_to_token) - 1
self.unk = self.token_to_idx['<unk>']
@classmethod
def build(cls, text, min_freq=1, reserved_tokens=None):
token_freqs = defaultdict(int)
for sentence in text:
for token in sentence:
token_freqs[token] += 1
uniq_tokens = ["<unk>"] + (reserved_tokens if reserved_tokens else [])
uniq_tokens += [token for token, freq in token_freqs.items() \
if freq >= min_freq and token != "<unk>"]
return cls(uniq_tokens)
- 书中4.6.5节使用的
MLP
模型类是基于EmbeddingBag
的MLP
实现,与4.6.3节的MLP
实现有所区别,具体如下:
class MLP(nn.Module):
def __init__(self, vocab_size, embedding_dim, hidden_dim, num_class):
super(MLP, self).__init__()
self.embedding = nn.EmbeddingBag(vocab_size, embedding_dim)
self.linear1 = nn.Linear(embedding_dim, hidden_dim)
self.activate = F.relu
self.linear2 = nn.Linear(hidden_dim, num_class)
def forward(self, inputs, offsets):
embedding = self.embedding(inputs, offsets)
hidden = self.activate(self.linear1(embedding))
outputs = self.linear2(hidden)
log_probs = F.log_softmax(outputs, dim=1)
return log_probs
- 书中6.2.3节
ELMoLstmEncoder
类的forward
函数实现有误,修正为:
def forward(self, inputs, lengths):
batch_size, seq_len, input_dim = inputs.shape
rev_idx = torch.arange(seq_len).unsqueeze(0).repeat(batch_size, 1)
for i in range(lengths.shape[0]):
rev_idx[i,:lengths[i]] = torch.arange(lengths[i]-1, -1, -1)
rev_idx = rev_idx.unsqueeze(2).expand_as(inputs)
rev_idx = rev_idx.to(inputs.device)
rev_inputs = inputs.gather(1, rev_idx)
forward_inputs, backward_inputs = inputs, rev_inputs
stacked_forward_states, stacked_backward_states = [], []
for layer_index in range(self.num_layers):
# Transfer `lengths` to CPU to be compatible with latest PyTorch versions.
packed_forward_inputs = pack_padded_sequence(
forward_inputs, lengths.cpu(), batch_first=True, enforce_sorted=False)
packed_backward_inputs = pack_padded_sequence(
backward_inputs, lengths.cpu(), batch_first=True, enforce_sorted=False)
# forward
forward_layer = self.forward_layers[layer_index]
packed_forward, _ = forward_layer(packed_forward_inputs)
forward = pad_packed_sequence(packed_forward, batch_first=True)[0]
forward = self.forward_projections[layer_index](forward)
stacked_forward_states.append(forward)
# backward
backward_layer = self.backward_layers[layer_index]
packed_backward, _ = backward_layer(packed_backward_inputs)
backward = pad_packed_sequence(packed_backward, batch_first=True)[0]
backward = self.backward_projections[layer_index](backward)
# convert back to original sequence order using rev_idx
stacked_backward_states.append(backward.gather(1, rev_idx))
forward_inputs, backward_inputs = forward, backward
# stacked_forward_states: [batch_size, seq_len, projection_dim] * num_layers
# stacked_backward_states: [batch_size, seq_len, projection_dim] * num_layers
return stacked_forward_states, stacked_backward_states