(Unofficial) Pytorch implementation of JointBERT
: BERT for Joint Intent Classification and Slot Filling
- Predict
intent
and slot
at the same time from one BERT model (=Joint model)
- total_loss = intent_loss + coef * slot_loss (Change coef with
--slot_loss_coef
option)
- If you want to use CRF layer, give
--use_crf
option
- python>=3.6
- torch==1.13.0
- transformers==4.20.1
- seqeval==1.2.2
- pytorch-crf==1.1.0
|
Train |
Dev |
Test |
Intent Labels |
Slot Labels |
ATIS |
4,478 |
500 |
893 |
21 |
120 |
Snips |
13,084 |
700 |
700 |
7 |
72 |
- The number of labels are based on the train dataset.
- Add
UNK
for labels (For intent and slot labels which are only shown in dev and test dataset)
- Add
PAD
for slot label
$ python3 main.py --task {task_name} \
--model_type {model_type} \
--model_dir {model_dir_name} \
--do_train --do_eval \
--use_crf
# For ATIS
$ python main.py --task atis \
--model_type bert \
--model_dir atis_model \
--do_train --do_eval
# For Snips
$ python3 main.py --task snips \
--model_type bert \
--model_dir snips_model \
--do_train --do_eval
$ python3 predict.py --input_file {INPUT_FILE_PATH} --output_file {OUTPUT_FILE_PATH} --model_dir {SAVED_CKPT_PATH}
- Run 5 ~ 10 epochs (Record the best result)
- Only test with
uncased
model
- ALBERT xxlarge sometimes can't converge well for slot prediction.
|
|
Intent acc (%) |
Slot F1 (%) |
Sentence acc (%) |
Snips |
BERT |
99.14 |
96.90 |
93.00 |
|
BERT + CRF |
98.57 |
97.24 |
93.57 |
|
DistilBERT |
98.00 |
96.10 |
91.00 |
|
DistilBERT + CRF |
98.57 |
96.46 |
91.85 |
|
ALBERT |
98.43 |
97.16 |
93.29 |
|
ALBERT + CRF |
99.00 |
96.55 |
92.57 |
ATIS |
BERT |
97.87 |
95.59 |
88.24 |
|
BERT + CRF |
97.98 |
95.93 |
88.58 |
|
DistilBERT |
97.76 |
95.50 |
87.68 |
|
DistilBERT + CRF |
97.65 |
95.89 |
88.24 |
|
ALBERT |
97.64 |
95.78 |
88.13 |
|
ALBERT + CRF |
97.42 |
96.32 |
88.69 |
- 2019/12/03: Add DistilBert and RoBERTa result
- 2019/12/14: Add Albert (large v1) result
- 2019/12/22: Available to predict sentences
- 2019/12/26: Add Albert (xxlarge v1) result
- 2019/12/29: Add CRF option
- 2019/12/30: Available to check
sentence-level semantic frame accuracy
- 2020/01/23: Only show the result related with uncased model
- 2020/04/03: Update with new prediction code