/vnpy

基于Python的开源量化交易平台开发框架

Primary LanguagePythonMIT LicenseMIT

By Traders, For Traders.

💬 Want to read this in english ? Go here

vn.py是一套基于Python的开源量化交易系统开发框架,在开源社区7年持续不断的贡献下一步步成长为全功能量化交易平台,自2015年正式发布以来已经积累了众多来自金融机构或相关领域的用户,包括私募基金、证券公司、期货公司等。

全新的《vn.py全实战进阶》系列在线课程,已经在官方微信公众号[veighna-community]上线,覆盖30天入门、CTA策略、期权波动率交易等内容。购买请扫描下方二维码关注后,点击菜单栏的【进阶资料】按钮即可:

在使用vn.py进行二次开发(策略、模块等)的过程中有任何疑问,请查看vn.py项目文档,如果无法解决请前往官方社区论坛的【提问求助】板块寻求帮助,也欢迎在【经验分享】板块分享你的使用心得!

针对vn.py的金融机构用户,创建了一个专门的【vn.py机构用户群】(QQ群号:676499931),主要分享机构应用方面相关的问题,如:银行间市场接入、资管O32系统、分布式部署等内容。请注意本群只对金融机构用户开放,加群时请注明:姓名-机构-部门。

功能特点

  1. 全功能量化交易平台(vnpy.trader),整合了多种交易接口,并针对具体策略算法和功能开发提供了简洁易用的API,用于快速构建交易员所需的量化交易应用。

  2. 覆盖国内外所有交易品种的交易接口(vnpy.gateway):

    • 国内市场

      • CTP(ctp):国内期货、期权

      • CTP Mini(mini):国内期货、期权

      • CTP证券(sopt):ETF期权

      • 飞马(femas):国内期货

      • 恒生UFT(uft):国内期货、ETF期权

      • 易盛(esunny):国内期货、黄金TD

      • 顶点飞创(sec):ETF期权

      • 顶点HTS(hts):ETF期权

      • 南华NHTD(nhtd):国内期货、ETF期权

      • 中泰XTP(xtp):国内证券(A股)、ETF期权

      • 华鑫奇点(tora):国内证券(A股)、ETF期权

      • 国泰君安(hft):国内证券(A股、两融)

      • 飞鼠(sgit):黄金TD、国内期货

      • 金仕达黄金(ksgold):黄金TD

      • 融航(rohon):期货资管

      • 中汇亿达(comstar):银行间市场

      • TTS(tts):国内期货(仿真)

    • 海外市场

      • Interactive Brokers(ib):全球证券、期货、期权、贵金属等

      • 易盛9.0外盘(tap):全球期货

      • 直达期货(da):全球期货

    • 特殊应用

      • RPC服务(rpc):跨进程通讯接口,用于分布式架构
  3. 开箱即用的各类量化策略交易应用(vnpy.app):

    • cta_strategy:CTA策略引擎模块,在保持易用性的同时,允许用户针对CTA类策略运行过程中委托的报撤行为进行细粒度控制(降低交易滑点、实现高频策略)

    • cta_backtester:CTA策略回测模块,无需使用Jupyter Notebook,直接使用图形界面直接进行策略回测分析、参数优化等相关工作

    • spread_trading:价差交易模块,支持自定义价差,实时计算价差行情和持仓,支持半自动价差算法交易以及全自动价差策略交易两种模式

    • option_master:期权交易模块,针对国内期权市场设计,支持多种期权定价模型、隐含波动率曲面计算、希腊值风险跟踪等功能

    • portfolio_strategy:组合策略模块,面向同时交易多合约的量化策略(Alpha、期权套利等),提供历史数据回测和实盘自动交易功能

    • algo_trading:算法交易模块,提供多种常用的智能交易算法:TWAP、Sniper、Iceberg、BestLimit等

    • script_trader:脚本策略模块,针对多标的组合类交易策略设计,同时也可以直接在命令行中实现REPL指令形式的交易,不支持回测功能

    • paper_account:本地仿真模块,纯本地化实现的仿真模拟交易功能,基于交易接口获取的实时行情进行委托撮合,提供委托成交推送以及持仓记录

    • chart_wizard:K线图表模块,基于RQData数据服务(期货)或者交易接口获取历史数据,并结合Tick推送显示实时行情变化

    • portfolio_manager:交易组合管理模块,以独立的策略交易组合(子账户)为基础,提供委托成交记录管理、交易仓位自动跟踪以及每日盈亏实时统计功能

    • rpc_service:RPC服务模块,允许将某一vn.py进程启动为服务端,作为统一的行情和交易路由通道,允许多客户端同时连接,实现多进程分布式系统

    • data_manager:历史数据管理模块,通过树形目录查看数据库中已有的数据概况,选择任意时间段数据查看字段细节,支持CSV文件的数据导入和导出

    • data_recorder:行情记录模块,基于图形界面进行配置,根据需求实时录制Tick或者K线行情到数据库中,用于策略回测或者实盘初始化

    • excel_rtd:Excel RTD(Real Time Data)实时数据服务,基于pyxll模块实现在Excel中获取各类数据(行情、合约、持仓等)的实时推送更新

    • risk_manager:风险管理模块,提供包括交易流控、下单数量、活动委托、撤单总数等规则的统计和限制,有效实现前端风控功能

    • web_trader:Web服务模块,针对B-S架构需求设计,实现了提供主动函数调用(REST)和被动数据推送(Websocket)的Web服务器

  4. Python交易API接口封装(vnpy.api),提供上述交易接口的底层对接实现。

    • REST Client(rest):基于协程异步IO的高性能REST API客户端,采用事件消息循环的编程模型,支持高并发实时交易请求发送

    • Websocket Client(websocket):基于协程异步IO的高性能Websocket API客户端,支持和REST Client共用事件循环并发运行,避免GIL带来的多线程性能损耗

  5. 简洁易用的事件驱动引擎(vnpy.event),作为事件驱动型交易程序的核心。

  6. 对接各类数据库的适配器接口:

    • SQL类

      • SQLite(sqlite):轻量级单文件数据库,无需安装和配置数据服务程序,vn.py的默认选项,适合入门新手用户

      • MySQL(mysql):世界最流行的开源关系型数据库,文档资料极为丰富,且可替换其他高NewSQL兼容实现(如TiDB)

      • PostgreSQL(postgresql):特性更为丰富的开源关系型数据库,支持通过扩展插件来新增功能,只推荐熟手使用

    • NoSQL类

      • DolphinDB(dolphindb):由浙江智臾科技有限公司研发的一款高性能分布式时序数据库,特别适用于对速度要求极高的低延时或实时性任务

      • Arctic(arctic):由量化对冲基金Man AHL基于MongoDB开发的高性能金融时序数据库,采用了分块化储存、LZ4压缩等性能优化方案,实现比MongoDB更高的读写效率

      • MongoDB(mongodb):基于分布式文件储存(bson格式)的文档式数据库,内置的热数据内存缓存提供更快读写速度

      • InfluxDB(influxdb):针对TimeSeries Data专门设计的时序数据库,列式数据储存提供极高的读写效率和外围分析应用

      • LevelDB(leveldb):由Google推出的高性能Key/Value数据库,基于LSM算法实现进程内存储引擎,支持数十亿级别的海量数据

  7. 对接各类数据服务的适配器接口:

    • 米筐RQData(rqdata):股票、期货、期权、基金、债券、黄金TD

    • 恒生UData(udata):股票、期货、期权

    • TuShare(tushare):股票、期货、期权、基金

    • 万得Wind(wind):股票、期货、基金、债券

    • 天软Tinysoft(tinysoft):股票、期货、基金、债券

    • 同花顺iFinD(ifind):股票、期货、基金、债券

    • 天勤TQSDK(tqsdk):期货

  8. 跨进程通讯标准组件(vnpy.rpc),用于实现分布式部署的复杂交易系统。

  9. Python高性能K线图表(vnpy.chart),支持大数据量图表显示以及实时数据更新功能。

  10. 社区论坛知乎专栏,内容包括vn.py项目的开发教程和Python在量化交易领域的应用研究等内容。

  11. 官方交流群262656087(QQ),管理严格(定期清除长期潜水的成员),入群费将捐赠给vn.py社区基金。

环境准备

  • 推荐使用vn.py团队为量化交易专门打造的Python发行版Veighna Studio-2.9.0,内置了最新版的vn.py框架以及Veighna Station量化管理平台,无需手动安装
  • 支持的系统版本:Windows 10以上/Windows Server 2016以上/Ubuntu 20.04 LTS以上
  • 支持的Python版本:Python 3.7 64位(注意必须是Python 3.7 64位版本

安装步骤

这里下载最新版本,解压后运行以下命令安装:

Windows

install.bat

Ubuntu

. install.sh

Macos

bash install_osx.sh

使用指南

  1. SimNow注册CTP仿真账号,并在该页面获取经纪商代码以及交易行情服务器地址。

  2. vn.py社区论坛注册获得Veighna Station账号密码(论坛账号密码即是)

  3. 启动Veighna Station(安装Veighna Studio后会在桌面自动创建快捷方式),输入上一步的账号密码登录

  4. 点击底部的Veighna Trader按钮,开始你的交易!!!

注意:

  • 在Veighna Trader的运行过程中请勿关闭Veighna Station(会自动退出)

脚本运行

除了基于Veighna Station的图形化启动方式外,也可以在任意目录下创建run.py,写入以下示例代码:

from vnpy.event import EventEngine
from vnpy.trader.engine import MainEngine
from vnpy.trader.ui import MainWindow, create_qapp
from vnpy.gateway.ctp import CtpGateway
from vnpy.app.cta_strategy import CtaStrategyApp
from vnpy.app.cta_backtester import CtaBacktesterApp

def main():
    """Start Veighna Trader"""
    qapp = create_qapp()

    event_engine = EventEngine()
    main_engine = MainEngine(event_engine)
    
    main_engine.add_gateway(CtpGateway)
    main_engine.add_app(CtaStrategyApp)
    main_engine.add_app(CtaBacktesterApp)

    main_window = MainWindow(main_engine, event_engine)
    main_window.showMaximized()

    qapp.exec()

if __name__ == "__main__":
    main()

在该目录下打开CMD(按住Shift->点击鼠标右键->在此处打开命令窗口/PowerShell)后运行下列命令启动Veighna Trader:

python run.py

贡献代码

vn.py使用Github托管其源代码,如果希望贡献代码请使用github的PR(Pull Request)的流程:

  1. 创建 Issue - 对于较大的改动(如新功能,大型重构等)最好先开issue讨论一下,较小的improvement(如文档改进,bufix等)直接发PR即可

  2. Fork vn.py - 点击右上角Fork按钮

  3. Clone你自己的fork: git clone https://github.com/$userid/vnpy.git

    • 如果你的fork已经过时,需要手动sync:同步方法
  4. dev创建你自己的feature branch: git checkout -b $my_feature_branch dev

  5. 在$my_feature_branch上修改并将修改push到你的fork上

  6. 创建从你的fork的$my_feature_branch分支到主项目的dev分支的[Pull Request] - 在此点击compare across forks,选择需要的fork和branch创建PR

  7. 等待review, 需要继续改进,或者被Merge!

在提交代码的时候,请遵守以下规则,以提高代码质量:

  • 使用flake8检查你的代码,确保没有error和warning。在项目根目录下运行flake8即可。

其他内容

版权说明

MIT