Code for reproducing our results in the Head2Toe paper.
Paper: arxiv.org/abs/2201.03529
First clone this repo.
git clone https://github.com/google-research/head2toe.git
cd head2toe
We need to download the pre-trained ImageNet checkpoints. If you use the code
below it will move the checkpoints under the correct folder. If you use a
different name you need to update paths in head2toe/configs_eval/finetune.py
.
mkdir checkpoints
cd checkpoints
wget -c https://storage.googleapis.com/gresearch/head2toe/imagenetr50.tar.gz
wget -c https://storage.googleapis.com/gresearch/head2toe/imagenetvitB16.tar.gz
tar -xvf imagenetr50.tar.gz
tar -xvf imagenetvitB16.tar.gz
rm *.tar.gz
cd ../
Let's run some tests. The following script creates a virtual environment and installs the necessary libraries. Finally, it runs a few tests.
bash run.sh
We need to activate the virtual environment before running an experiment. With that, we are ready to run some trivial Caltech101 experiments.
source env/bin/activate
python head2toe/evaluate.py --config=head2toe/configs_eval/finetune.py:imagenetr50 \
--config.dataset='data.caltech101'
This is not an officially supported Google product.