/non-overlapping_multiple-camera_tracking

Multi-Target Multi-Camera Human Tracking (Non-overlapping camera system)

Primary LanguagePython

non-overlapping_multiple-camera_tracking

This work references An equalized global graph model-based approach for multi-camera object tracking.

Dataset

This work uses NLPR_MCT dataset
After downloading the dataset, run dat2csv.py to change dat files to csv files.

python dat2csv.py --source PATH/TO/ANNOTATION --dataset DATASET_NO

Method

The association algorithm is iterative min-cost-flow.
The overview approach is shown in below:
overview approach

Experiments

The evaluation metrics including MCTA, mmes, and mmec. MCTA

Dataset 1

Method MCTA ↑ mmec (inter) ↓ mmes (intra) ↓
EGM 85.25 % 49 66
IMCF (this work) 84.01 % 53 59

Dataset 2

Method MCTA ↑ mmec (inter) ↓ mmes (intra) ↓
EGM 73.7 % 93 107
IMCF (this work) 85.76 % 60 110

Dataset 3

Method MCTA ↑ mmec (inter) ↓ mmes (intra) ↓
EGM 47.24 % 80 51
IMCF (this work) 31.77 % 133 82

Dataset 4

Method MCTA ↑ mmec (inter) ↓ mmes (intra) ↓
EGM 37.78 % 159 128
IMCF (this work) 28.52 % 177 166

How to run?

requirements

  • opencv-python==4.5.5
  • torchreid

showing videos

python display.py --dataset NO. --data_path PATH/TO/NPLR/DATA --annotation PATH/TO/ANNOTATION --bbox

tracking

run the modules seperately (take sub-dataset 1 as example)

python run_sct.py --dataset 1 --cid 1
python run_sct.py --dataset 1 --cid 2
python run_sct.py --dataset 1 --cid 3
python run_mct.py --dataset 1

NOTE the reid model is downloaded from torchreid model zoo